These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 36466262)

  • 1. Cotton proteomics: Dissecting the stress response mechanisms in cotton.
    Bawa G; Liu Z; Zhou Y; Fan S; Ma Q; Tissue DT; Sun X
    Front Plant Sci; 2022; 13():1035801. PubMed ID: 36466262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cotton proteomics for deciphering the mechanism of environment stress response and fiber development.
    Zhou M; Sun G; Sun Z; Tang Y; Wu Y
    J Proteomics; 2014 Jun; 105():74-84. PubMed ID: 24680693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unraveling the genetic and molecular basis of heat stress in cotton.
    Ijaz A; Anwar Z; Ali A; Ditta A; Shani MY; Haidar S; Wang B; Fang L; Khan SM; Khan MKR
    Front Genet; 2024; 15():1296622. PubMed ID: 38919956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding the responses of rice to environmental stress using proteomics.
    Singh R; Jwa NS
    J Proteome Res; 2013 Nov; 12(11):4652-69. PubMed ID: 23984864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide identification and expression analysis of stress-associated proteins (SAPs) containing A20/AN1 zinc finger in cotton.
    Gao W; Long L; Tian X; Jin J; Liu H; Zhang H; Xu F; Song C
    Mol Genet Genomics; 2016 Dec; 291(6):2199-2213. PubMed ID: 27681253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plant Immune System: Crosstalk Between Responses to Biotic and Abiotic Stresses the Missing Link in Understanding Plant Defence.
    Nejat N; Mantri N
    Curr Issues Mol Biol; 2017; 23():1-16. PubMed ID: 28154243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulatory Network of Cotton Genes in Response to Salt, Drought and Wilt Diseases (
    Billah M; Li F; Yang Z
    Front Plant Sci; 2021; 12():759245. PubMed ID: 34912357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advances in crop proteomics: PTMs of proteins under abiotic stress.
    Wu X; Gong F; Cao D; Hu X; Wang W
    Proteomics; 2016 Mar; 16(5):847-65. PubMed ID: 26616472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leaf anatomical alterations reduce cotton's mesophyll conductance under dynamic drought stress conditions.
    Zou J; Hu W; Li Y; Zhu H; He J; Wang Y; Meng Y; Chen B; Zhao W; Wang S; Zhou Z
    Plant J; 2022 Jul; 111(2):391-405. PubMed ID: 35506315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plant cell organelle proteomics in response to abiotic stress.
    Hossain Z; Nouri MZ; Komatsu S
    J Proteome Res; 2012 Jan; 11(1):37-48. PubMed ID: 22029473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relevance of proteomic investigations in plant abiotic stress physiology.
    Hakeem KR; Chandna R; Ahmad P; Iqbal M; Ozturk M
    OMICS; 2012 Nov; 16(11):621-35. PubMed ID: 23046473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long non-coding RNAs: emerging players regulating plant abiotic stress response and adaptation.
    Jha UC; Nayyar H; Jha R; Khurshid M; Zhou M; Mantri N; Siddique KHM
    BMC Plant Biol; 2020 Oct; 20(1):466. PubMed ID: 33046001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tandem mass tag-based (TMT) quantitative proteomics analysis reveals the response of fine roots to drought stress in cotton (Gossypium hirsutum L.).
    Xiao S; Liu L; Zhang Y; Sun H; Zhang K; Bai Z; Dong H; Liu Y; Li C
    BMC Plant Biol; 2020 Jul; 20(1):328. PubMed ID: 32652934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein expression changes during cotton fiber elongation in response to low temperature stress.
    Zheng M; Wang Y; Liu K; Shu H; Zhou Z
    J Plant Physiol; 2012 Mar; 169(4):399-409. PubMed ID: 22244703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards doubling fibre yield for cotton in the semiarid agricultural area by increasing tolerance to drought, heat and salinity simultaneously.
    Esmaeili N; Cai Y; Tang F; Zhu X; Smith J; Mishra N; Hequet E; Ritchie G; Jones D; Shen G; Payton P; Zhang H
    Plant Biotechnol J; 2021 Mar; 19(3):462-476. PubMed ID: 32902115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein and Proteome Atlas for Plants under Stresses: New Highlights and Ways for Integrated Omics in Post-Genomics Era.
    Wang X
    Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31640274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plant responses to ambient temperature fluctuations and water-limiting conditions: A proteome-wide perspective.
    Johnová P; Skalák J; Saiz-Fernández I; Brzobohatý B
    Biochim Biophys Acta; 2016 Aug; 1864(8):916-31. PubMed ID: 26861773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plant subcellular proteomics: Application for exploring optimal cell function in soybean.
    Wang X; Komatsu S
    J Proteomics; 2016 Jun; 143():45-56. PubMed ID: 26808589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein expression changes during cotton fiber elongation in response to drought stress and recovery.
    Zheng M; Meng Y; Yang C; Zhou Z; Wang Y; Chen B
    Proteomics; 2014 Aug; 14(15):1776-95. PubMed ID: 24889071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comprehensive update on Capsicum proteomics: Advances and future prospects.
    Momo J; Kumar A; Islam K; Ahmad I; Rawoof A; Ramchiary N
    J Proteomics; 2022 Jun; 261():104578. PubMed ID: 35398364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.