These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 36466262)

  • 21. Genome-wide characterization and expression analysis of Erf gene family in cotton.
    Zafar MM; Rehman A; Razzaq A; Parvaiz A; Mustafa G; Sharif F; Mo H; Youlu Y; Shakeel A; Ren M
    BMC Plant Biol; 2022 Mar; 22(1):134. PubMed ID: 35317739
    [TBL] [Abstract][Full Text] [Related]  

  • 22. How does proteomics target plant environmental stresses in a semi-arid area?
    Sobhanian H; Pahlavan S; Meyfour A
    Mol Biol Rep; 2020 Apr; 47(4):3181-3194. PubMed ID: 32232715
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Decipher the Molecular Response of Plant Single Cell Types to Environmental Stresses.
    Nourbakhsh-Rey M; Libault M
    Biomed Res Int; 2016; 2016():4182071. PubMed ID: 27088086
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Histone Deacetylase (HDAC) Gene Family in Allotetraploid Cotton and Its Diploid Progenitors: In Silico Identification, Molecular Characterization, and Gene Expression Analysis under Multiple Abiotic Stresses, DNA Damage and Phytohormone Treatments.
    Imran M; Shafiq S; Naeem MK; Widemann E; Munir MZ; Jensen KB; Wang RR
    Int J Mol Sci; 2020 Jan; 21(1):. PubMed ID: 31947720
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative Genome-wide Analysis and Expression Profiling of Histone Acetyltransferase (HAT) Gene Family in Response to Hormonal Applications, Metal and Abiotic Stresses in Cotton.
    Imran M; Shafiq S; Farooq MA; Naeem MK; Widemann E; Bakhsh A; Jensen KB; Wang RR
    Int J Mol Sci; 2019 Oct; 20(21):. PubMed ID: 31731441
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Advances in plant proteomics toward improvement of crop productivity and stress resistancex.
    Hu J; Rampitsch C; Bykova NV
    Front Plant Sci; 2015; 6():209. PubMed ID: 25926838
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evolutionary and Characteristic Analysis of RING-DUF1117 E3 Ubiquitin Ligase Genes in
    Zhao YP; Shen JL; Li WJ; Wu N; Chen C; Hou YX
    Biomolecules; 2021 Aug; 11(8):. PubMed ID: 34439811
    [No Abstract]   [Full Text] [Related]  

  • 28. The Respiratory Burst Oxidase Homolog Protein D (
    Huang W; Zhang Y; Zhou J; Wei F; Feng Z; Zhao L; Shi Y; Feng H; Zhu H
    Int J Mol Sci; 2021 Dec; 22(23):. PubMed ID: 34884844
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Potassium in plant physiological adaptation to abiotic stresses.
    Mostofa MG; Rahman MM; Ghosh TK; Kabir AH; Abdelrahman M; Rahman Khan MA; Mochida K; Tran LP
    Plant Physiol Biochem; 2022 Sep; 186():279-289. PubMed ID: 35932652
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Progress and challenges for abiotic stress proteomics of crop plants.
    Barkla BJ; Vera-Estrella R; Pantoja O
    Proteomics; 2013 Jun; 13(12-13):1801-15. PubMed ID: 23512887
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Advances in plant proteomics. II. Application of proteome techniques to plant biology research].
    Ruan SL; Ma HS; Wang SH; Xin Y; Qian LH; Tong JX; Zhao HP; Wang J
    Yi Chuan; 2006 Dec; 28(12):1633-48. PubMed ID: 17138554
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of WRKY Transcription Factors in Regulation of Abiotic Stress Responses in Cotton.
    Guo X; Ullah A; Siuta D; Kukfisz B; Iqbal S
    Life (Basel); 2022 Sep; 12(9):. PubMed ID: 36143446
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanisms Regulating the Dynamics of Photosynthesis Under Abiotic Stresses.
    Muhammad I; Shalmani A; Ali M; Yang QH; Ahmad H; Li FB
    Front Plant Sci; 2020; 11():615942. PubMed ID: 33584756
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genome-wide cloning, identification, classification and functional analysis of cotton heat shock transcription factors in cotton (Gossypium hirsutum).
    Wang J; Sun N; Deng T; Zhang L; Zuo K
    BMC Genomics; 2014 Nov; 15(1):961. PubMed ID: 25378022
    [TBL] [Abstract][Full Text] [Related]  

  • 35. MicroRNAs in cotton: an open world needs more exploration.
    Wang Q; Zhang B
    Planta; 2015 Jun; 241(6):1303-12. PubMed ID: 25841643
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Green systems biology - From single genomes, proteomes and metabolomes to ecosystems research and biotechnology.
    Weckwerth W
    J Proteomics; 2011 Dec; 75(1):284-305. PubMed ID: 21802534
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Common bean proteomics: Present status and future strategies.
    Zargar SM; Mahajan R; Nazir M; Nagar P; Kim ST; Rai V; Masi A; Ahmad SM; Shah RA; Ganai NA; Agrawal GK; Rakwal R
    J Proteomics; 2017 Oct; 169():239-248. PubMed ID: 28347863
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Melatonin Improves Cotton Salt Tolerance by Regulating ROS Scavenging System and Ca
    Zhang Y; Fan Y; Rui C; Zhang H; Xu N; Dai M; Chen X; Lu X; Wang D; Wang J; Wang J; Wang Q; Wang S; Chen C; Guo L; Zhao L; Ye W
    Front Plant Sci; 2021; 12():693690. PubMed ID: 34262587
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Founder transformants of cotton (Gossypium hirsutum L.) obtained through the introduction of DS-Red, Rec, Rep and CRISPR/Cas9 expressing constructs for developing base lines of recombinase mediated gene stacking.
    Aslam S; Khan SH; Ahmad A; Walawage SL; Dandekar AM
    PLoS One; 2022; 17(2):e0263219. PubMed ID: 35113911
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Impact assessment of major abiotic stresses on the proteome profiling of some important crop plants: a current update.
    Sharma JK; Sihmar M; Santal AR; Singh NP
    Biotechnol Genet Eng Rev; 2019 Oct; 35(2):126-160. PubMed ID: 31478455
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.