These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 36466262)

  • 41. Green systems biology - From single genomes, proteomes and metabolomes to ecosystems research and biotechnology.
    Weckwerth W
    J Proteomics; 2011 Dec; 75(1):284-305. PubMed ID: 21802534
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Common bean proteomics: Present status and future strategies.
    Zargar SM; Mahajan R; Nazir M; Nagar P; Kim ST; Rai V; Masi A; Ahmad SM; Shah RA; Ganai NA; Agrawal GK; Rakwal R
    J Proteomics; 2017 Oct; 169():239-248. PubMed ID: 28347863
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Melatonin Improves Cotton Salt Tolerance by Regulating ROS Scavenging System and Ca
    Zhang Y; Fan Y; Rui C; Zhang H; Xu N; Dai M; Chen X; Lu X; Wang D; Wang J; Wang J; Wang Q; Wang S; Chen C; Guo L; Zhao L; Ye W
    Front Plant Sci; 2021; 12():693690. PubMed ID: 34262587
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Founder transformants of cotton (Gossypium hirsutum L.) obtained through the introduction of DS-Red, Rec, Rep and CRISPR/Cas9 expressing constructs for developing base lines of recombinase mediated gene stacking.
    Aslam S; Khan SH; Ahmad A; Walawage SL; Dandekar AM
    PLoS One; 2022; 17(2):e0263219. PubMed ID: 35113911
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Impact assessment of major abiotic stresses on the proteome profiling of some important crop plants: a current update.
    Sharma JK; Sihmar M; Santal AR; Singh NP
    Biotechnol Genet Eng Rev; 2019 Oct; 35(2):126-160. PubMed ID: 31478455
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Quantitative proteomics and transcriptomics reveal key metabolic processes associated with cotton fiber initiation.
    Wang XC; Li Q; Jin X; Xiao GH; Liu GJ; Liu NJ; Qin YM
    J Proteomics; 2015 Jan; 114():16-27. PubMed ID: 25449837
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Identification of Arabidopsis candidate genes in response to biotic and abiotic stresses using comparative microarrays.
    Sham A; Moustafa K; Al-Ameri S; Al-Azzawi A; Iratni R; AbuQamar S
    PLoS One; 2015; 10(5):e0125666. PubMed ID: 25933420
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Function and Mechanism of Jasmonic Acid in Plant Responses to Abiotic and Biotic Stresses.
    Wang Y; Mostafa S; Zeng W; Jin B
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445272
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Genome-wide characterization and expression analysis of cystathionine β-synthase genes in plant development and abiotic stresses of cotton (Gossypium spp.).
    Ali F; Li Y; Li F; Wang Z
    Int J Biol Macromol; 2021 Dec; 193(Pt A):823-837. PubMed ID: 34687765
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Developing fiber specific promoter-reporter transgenic lines to study the effect of abiotic stresses on fiber development in cotton.
    Chen J; Burke JJ
    PLoS One; 2015; 10(6):e0129870. PubMed ID: 26030401
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Transcriptome analysis reveals crosstalk of responsive genes to multiple abiotic stresses in cotton (Gossypium hirsutum L.).
    Zhu YN; Shi DQ; Ruan MB; Zhang LL; Meng ZH; Liu J; Yang WC
    PLoS One; 2013; 8(11):e80218. PubMed ID: 24224045
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of abiotic stress on plants: a systems biology perspective.
    Cramer GR; Urano K; Delrot S; Pezzotti M; Shinozaki K
    BMC Plant Biol; 2011 Nov; 11():163. PubMed ID: 22094046
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Identification and expression analysis of arabinogalactan protein genes in cotton reveal the function of GhAGP15 in Verticillium dahliae resistance.
    Li WJ; Wu N; Chen C; Zhao YP; Hou YX
    Gene; 2022 May; 822():146336. PubMed ID: 35182675
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Proteomic dissection of plant responses to various pathogens.
    Fang X; Chen J; Dai L; Ma H; Zhang H; Yang J; Wang F; Yan C
    Proteomics; 2015 May; 15(9):1525-43. PubMed ID: 25641875
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Proteomics reveals new salt responsive proteins associated with rice plasma membrane.
    Nohzadeh Malakshah S; Habibi Rezaei M; Heidari M; Salekdeh GH
    Biosci Biotechnol Biochem; 2007 Sep; 71(9):2144-54. PubMed ID: 17827676
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Rice proteomics: a model system for crop improvement and food security.
    Kim ST; Kim SG; Agrawal GK; Kikuchi S; Rakwal R
    Proteomics; 2014 Mar; 14(4-5):593-610. PubMed ID: 24323464
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Proteomics of model and crop plant species: status, current limitations and strategic advances for crop improvement.
    Vanderschuren H; Lentz E; Zainuddin I; Gruissem W
    J Proteomics; 2013 Nov; 93():5-19. PubMed ID: 23748024
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Thiamine functions as a key activator for modulating plant health and broad-spectrum tolerance in cotton.
    Li W; Mi X; Jin X; Zhang D; Zhu G; Shang X; Zhang D; Guo W
    Plant J; 2022 Jul; 111(2):374-390. PubMed ID: 35506325
    [TBL] [Abstract][Full Text] [Related]  

  • 59. GhATAF1, a NAC transcription factor, confers abiotic and biotic stress responses by regulating phytohormonal signaling networks.
    He X; Zhu L; Xu L; Guo W; Zhang X
    Plant Cell Rep; 2016 Oct; 35(10):2167-79. PubMed ID: 27432176
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Screening of abiotic stress-responsive cotton genes using a cotton full-length cDNA overexpressing Arabidopsis library.
    Li S; Chen H; Hou Z; Li Y; Yang C; Wang D; Song CP
    J Integr Plant Biol; 2020 Jul; 62(7):998-1016. PubMed ID: 31393066
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.