These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 36466323)
1. Bioengineering for vascularization: Trends and directions of photocrosslinkable gelatin methacrylate hydrogels. Im GB; Lin RZ Front Bioeng Biotechnol; 2022; 10():1053491. PubMed ID: 36466323 [TBL] [Abstract][Full Text] [Related]
2. Functional Human Vascular Network Generated in Photocrosslinkable Gelatin Methacrylate Hydrogels. Chen YC; Lin RZ; Qi H; Yang Y; Bae H; Melero-Martin JM; Khademhosseini A Adv Funct Mater; 2012 May; 22(10):2027-2039. PubMed ID: 22907987 [TBL] [Abstract][Full Text] [Related]
3. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Yue K; Trujillo-de Santiago G; Alvarez MM; Tamayol A; Annabi N; Khademhosseini A Biomaterials; 2015 Dec; 73():254-71. PubMed ID: 26414409 [TBL] [Abstract][Full Text] [Related]
4. Transdermal regulation of vascular network bioengineering using a photopolymerizable methacrylated gelatin hydrogel. Lin RZ; Chen YC; Moreno-Luna R; Khademhosseini A; Melero-Martin JM Biomaterials; 2013 Sep; 34(28):6785-96. PubMed ID: 23773819 [TBL] [Abstract][Full Text] [Related]
6. Gelatin-based micro-hydrogel carrying genetically engineered human endothelial cells for neovascularization. Choi YH; Kim SH; Kim IS; Kim K; Kwon SK; Hwang NS Acta Biomater; 2019 Sep; 95():285-296. PubMed ID: 30710712 [TBL] [Abstract][Full Text] [Related]
7. Gelatin methacrylate scaffold for bone tissue engineering: The influence of polymer concentration. Celikkin N; Mastrogiacomo S; Jaroszewicz J; Walboomers XF; Swieszkowski W J Biomed Mater Res A; 2018 Jan; 106(1):201-209. PubMed ID: 28884519 [TBL] [Abstract][Full Text] [Related]
8. Gelatin Methacrylate (GelMA)-Based Hydrogels for Cell Transplantation: an Effective Strategy for Tissue Engineering. Xiao S; Zhao T; Wang J; Wang C; Du J; Ying L; Lin J; Zhang C; Hu W; Wang L; Xu K Stem Cell Rev Rep; 2019 Oct; 15(5):664-679. PubMed ID: 31154619 [TBL] [Abstract][Full Text] [Related]
9. Bioengineering vascularized tissue constructs using an injectable cell-laden enzymatically crosslinked collagen hydrogel derived from dermal extracellular matrix. Kuo KC; Lin RZ; Tien HW; Wu PY; Li YC; Melero-Martin JM; Chen YC Acta Biomater; 2015 Nov; 27():151-166. PubMed ID: 26348142 [TBL] [Abstract][Full Text] [Related]
10. Unveiling the versatility of gelatin methacryloyl hydrogels: a comprehensive journey into biomedical applications. Pramanik S; Alhomrani M; Alamri AS; Alsanie WF; Nainwal P; Kimothi V; Deepak A; Sargsyan AS Biomed Mater; 2024 Jun; 19(4):. PubMed ID: 38768611 [TBL] [Abstract][Full Text] [Related]
11. Precision Engineering of Chondrocyte Microenvironments: Investigating the Optimal Reaction Conditions for Type B Gelatin Methacrylate Hydrogel Matrix for TC28a2 Cells. Hu Q; Torres MA; Pan H; Williams SL; Ecker M J Funct Biomater; 2024 Mar; 15(3):. PubMed ID: 38535270 [TBL] [Abstract][Full Text] [Related]
12. Stiffness modification of photopolymerizable gelatin-methacrylate hydrogels influences endothelial differentiation of human mesenchymal stem cells. Lin CH; Su JJ; Lee SY; Lin YM J Tissue Eng Regen Med; 2018 Oct; 12(10):2099-2111. PubMed ID: 30058281 [TBL] [Abstract][Full Text] [Related]
13. A composite hydrogel containing resveratrol-laden nanoparticles and platelet-derived extracellular vesicles promotes wound healing in diabetic mice. Zhu W; Dong Y; Xu P; Pan Q; Jia K; Jin P; Zhou M; Xu Y; Guo R; Cheng B Acta Biomater; 2022 Dec; 154():212-230. PubMed ID: 36309190 [TBL] [Abstract][Full Text] [Related]
14. Cell-laden photocrosslinked GelMA-DexMA copolymer hydrogels with tunable mechanical properties for tissue engineering. Wang H; Zhou L; Liao J; Tan Y; Ouyang K; Ning C; Ni G; Tan G J Mater Sci Mater Med; 2014 Sep; 25(9):2173-83. PubMed ID: 25008369 [TBL] [Abstract][Full Text] [Related]
15. Gelatin methacrylate/carboxybetaine methacrylate hydrogels with tunable crosslinking for controlled drug release. Lai TC; Yu J; Tsai WB J Mater Chem B; 2016 Apr; 4(13):2304-2313. PubMed ID: 32263225 [TBL] [Abstract][Full Text] [Related]
16. Tissue-Specific Hydrogels for Three-Dimensional Printing and Potential Application in Peripheral Nerve Regeneration. Wang T; Han Y; Wu Z; Qiu S; Rao Z; Zhao C; Zhu Q; Quan D; Bai Y; Liu X Tissue Eng Part A; 2022 Feb; 28(3-4):161-174. PubMed ID: 34309417 [TBL] [Abstract][Full Text] [Related]