BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 36466342)

  • 1. A TGF-loading hydrogel scaffold capable of promoting chondrogenic differentiation for repairing rabbit nasal septum cartilage defect.
    Zhang D; Su Y; Sun P; Liu X; Zhang L; Ling X; Fan Y; Wu K; Shi Q; Liu J
    Front Bioeng Biotechnol; 2022; 10():1057904. PubMed ID: 36466342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Study on the gelatin methacryloyl composite scaffold with exogenous transforming growth factor β
    Liu X; Wang Z; Xu C; Guan J; Wei B; Liu Y
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2021 Jul; 35(7):904-912. PubMed ID: 34308601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of 3D-Printed Interpenetrating Hydrogel Scaffolds for Promoting Chondrogenic Differentiation.
    Guan J; Yuan FZ; Mao ZM; Zhu HL; Lin L; Chen HH; Yu JK
    Polymers (Basel); 2021 Jun; 13(13):. PubMed ID: 34209853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytomodulin-10 modified GelMA hydrogel with kartogenin for in-situ osteochondral regeneration.
    Liu G; Guo Q; Liu C; Bai J; Wang H; Li J; Liu D; Yu Q; Shi J; Liu C; Zhu C; Li B; Zhang H
    Acta Biomater; 2023 Oct; 169():317-333. PubMed ID: 37586447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A 3D-printed PRP-GelMA hydrogel promotes osteochondral regeneration through M2 macrophage polarization in a rabbit model.
    Jiang G; Li S; Yu K; He B; Hong J; Xu T; Meng J; Ye C; Chen Y; Shi Z; Feng G; Chen W; Yan S; He Y; Yan R
    Acta Biomater; 2021 Jul; 128():150-162. PubMed ID: 33894346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Experimental study on tissue engineered cartilage constructed by three-dimensional bioprinted human adipose-derived stem cells combined with gelatin methacryloyl].
    Mu L; Zeng J; Huang Y; Lin Y; Jiang H; Teng L
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2021 Jul; 35(7):896-903. PubMed ID: 34308600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RADA-16-based Self-assembled Peptide Nanofiber Scaffolds Loaded with TGF-β1 Enhance the Chondrogenic Differentiation Potential of BMSCs
    Yu P; Duan L; Yan Z; Li J; Cai DZ
    Curr Stem Cell Res Ther; 2024; 19(2):257-266. PubMed ID: 36927429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogel composite scaffolds achieve recruitment and chondrogenesis in cartilage tissue engineering applications.
    Huang B; Li P; Chen M; Peng L; Luo X; Tian G; Wang H; Wu L; Tian Q; Li H; Yang Y; Jiang S; Yang Z; Zha K; Sui X; Liu S; Guo Q
    J Nanobiotechnology; 2022 Jan; 20(1):25. PubMed ID: 34991615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel 3D-printing bilayer GelMA-based hydrogel containing BP,
    Sun T; Feng Z; He W; Li C; Han S; Li Z; Guo R
    Biofabrication; 2023 Oct; 16(1):. PubMed ID: 37857284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of kartogenin-loaded gelatin methacryloyl hydrogel scaffold with bone marrow stimulation for enthesis healing in rotator cuff repair.
    Huang C; Zhang X; Luo H; Pan J; Cui W; Cheng B; Zhao S; Chen G
    J Shoulder Elbow Surg; 2021 Mar; 30(3):544-553. PubMed ID: 32650072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dendrimer-modified gelatin methacrylate hydrogels carrying adipose-derived stromal/stem cells promote cartilage regeneration.
    Liu F; Wang X; Li Y; Ren M; He P; Wang L; Xu J; Yang S; Ji P
    Stem Cell Res Ther; 2022 Jan; 13(1):26. PubMed ID: 35073961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silk fibroin hydrogel scaffolds incorporated with chitosan nanoparticles repair articular cartilage defects by regulating TGF-β1 and BMP-2.
    Li Y; Liu Y; Guo Q
    Arthritis Res Ther; 2021 Feb; 23(1):50. PubMed ID: 33531052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repair of a Meniscal Defect in a Rabbit Model Through Use of a Thermosensitive, Injectable, In Situ Crosslinked Hydrogel With Encapsulated Bone Mesenchymal Stromal Cells and Transforming Growth Factor β1.
    Chen C; Song J; Qiu J; Zhao J
    Am J Sports Med; 2020 Mar; 48(4):884-894. PubMed ID: 31967854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Demineralized bone matrix combined bone marrow mesenchymal stem cells, bone morphogenetic protein-2 and transforming growth factor-β3 gene promoted pig cartilage defect repair.
    Wang X; Li Y; Han R; He C; Wang G; Wang J; Zheng J; Pei M; Wei L
    PLoS One; 2014; 9(12):e116061. PubMed ID: 25545777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The promotion of cartilage defect repair using adenovirus mediated Sox9 gene transfer of rabbit bone marrow mesenchymal stem cells.
    Cao L; Yang F; Liu G; Yu D; Li H; Fan Q; Gan Y; Tang T; Dai K
    Biomaterials; 2011 Jun; 32(16):3910-20. PubMed ID: 21377725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Repairing cartilage defects with bone marrow mesenchymal stem cells induced by CDMP and TGF-β1.
    Wu G; Cui Y; Ma L; Pan X; Wang X; Zhang B
    Cell Tissue Bank; 2014 Mar; 15(1):51-7. PubMed ID: 23460257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transforming growth factor-beta1 promotes articular cartilage repair through canonical Smad and Hippo pathways in bone mesenchymal stem cells.
    Ying J; Wang P; Zhang S; Xu T; Zhang L; Dong R; Xu S; Tong P; Wu C; Jin H
    Life Sci; 2018 Jan; 192():84-90. PubMed ID: 29158053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stromal Cell-Derived Factor-1 Accelerates Cartilage Defect Repairing by Recruiting Bone Marrow Mesenchymal Stem Cells and Promoting Chondrogenic Differentiation.
    Wang Y; Sun X; Lv J; Zeng L; Wei X; Wei L
    Tissue Eng Part A; 2017 Oct; 23(19-20):1160-1168. PubMed ID: 28478702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coaction of TGF-β1 and CDMP1 in BMSCs-induced laryngeal cartilage repair in rabbits.
    Ma L; Zhang Y; Wang C
    J Mater Sci Mater Med; 2020 Nov; 31(12):130. PubMed ID: 33252704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-Dimensional Printing Biologically Inspired DNA-Based Gradient Scaffolds for Cartilage Tissue Regeneration.
    Zhou X; Tenaglio S; Esworthy T; Hann SY; Cui H; Webster TJ; Fenniri H; Zhang LG
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):33219-33228. PubMed ID: 32603082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.