These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 36466736)

  • 1. Autonomous control for miniaturized mobile robots in unknown pipe networks.
    Nguyen TL; Blight A; Pickering A; Jackson-Mills G; Barber AR; Boyle JH; Richardson R; Dogar M; Cohen N
    Front Robot AI; 2022; 9():997415. PubMed ID: 36466736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time robot topological localization and mapping with limited visual sampling in simulated buried pipe networks.
    Li XS; Nguyen TL; Cohn AG; Dogar M; Cohen N
    Front Robot AI; 2023; 10():1202568. PubMed ID: 38077456
    [No Abstract]   [Full Text] [Related]  

  • 3. Development of an In-Pipe Inspection Robot for Large-Diameter Water Pipes.
    Jeon KW; Jung EJ; Bae JH; Park SH; Kim JJ; Chung G; Chung HJ; Yi H
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A robust method for approximate visual robot localization in feature-sparse sewer pipes.
    Edwards S; Zhang R; Worley R; Mihaylova L; Aitken J; Anderson SR
    Front Robot AI; 2023; 10():1150508. PubMed ID: 37090891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a Wheel-Type In-Pipe Robot Using Continuously Variable Transmission Mechanisms for Pipeline Inspection.
    Park J; Luong T; Moon H
    Biomimetics (Basel); 2024 Feb; 9(2):. PubMed ID: 38392159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A pipeline inspection robot for navigating tubular environments in the sub-centimeter scale.
    Tang C; Du B; Jiang S; Shao Q; Dong X; Liu XJ; Zhao H
    Sci Robot; 2022 May; 7(66):eabm8597. PubMed ID: 35613300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electromagnetic Feet With Soft Toes for Adaptive, Versatile, and Stable Locomotion of an Inchworm-Inspired Pipe Crawling Robot.
    Khan MB; Chuthong T; Homchanthanakul J; Manoonpong P
    Front Bioeng Biotechnol; 2022; 10():842816. PubMed ID: 35252150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unified Approach to the Motion Design for a Snake Robot Negotiating Complicated Pipe Structures.
    Inazawa M; Takemori T; Tanaka M; Matsuno F
    Front Robot AI; 2021; 8():629368. PubMed ID: 34012981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Sensor Fusion Method for Pose Estimation of C-Legged Robots.
    De León J; Cebolla R; Barrientos A
    Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33255792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy-efficient control of a screw-drive pipe robot with consideration of actuator's characteristics.
    Li P; Ma S; Lyu C; Jiang X; Liu Y
    Robotics Biomim; 2016; 3():11. PubMed ID: 27453809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multimodal pipe-climbing robot with origami clutches and soft modular legs.
    Jiang Y; Chen D; Zhang H; Giraud F; Paik J
    Bioinspir Biomim; 2020 Jan; 15(2):026002. PubMed ID: 31746781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Literature Review on Safety Perception and Trust during Human-Robot Interaction with Autonomous Mobile Robots That Apply to Industrial Environments.
    Haney JM; Liang CJ
    IISE Trans Occup Ergon Hum Factors; 2024; 12(1-2):6-27. PubMed ID: 38190192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fuzzy Guided Autonomous Nursing Robot through Wireless Beacon Network.
    Narayanan KL; Krishnan RS; Son LH; Tung NT; Julie EG; Robinson YH; Kumar R; Gerogiannis VC
    Multimed Tools Appl; 2022; 81(3):3297-3325. PubMed ID: 34345198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-Actuator Soft Robot for In-Pipe Crawling.
    Lin Y; Xu YX; Juang JY
    Soft Robot; 2023 Feb; 10(1):174-186. PubMed ID: 35544260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robot Localization in Water Pipes Using Acoustic Signals and Pose Graph Optimization.
    Worley R; Ma K; Sailor G; Schirru MM; Dwyer-Joyce R; Boxall J; Dodd T; Collins R; Anderson S
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 33003456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autonomous Search of Radioactive Sources through Mobile Robots.
    Huo J; Liu M; Neusypin KA; Liu H; Guo M; Xiao Y
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32575436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic accurate longitudinal location of structural defects in sewer pipes via monocular ranging.
    He J; Hou Z; Zhu D; Li Z; Li Z
    Appl Opt; 2022 Sep; 61(27):7899-7911. PubMed ID: 36255910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autonomous Spiral Motion by a Small-Type Robot on an Obstacle-Available Surface.
    Tokunaga S; Premachandra C; Premachandra HWH; Kawanaka H; Sumathipala S; Sudantha BS
    Micromachines (Basel); 2021 Apr; 12(4):. PubMed ID: 33915731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Positioning, Navigation, and Book Accessing/Returning in an Autonomous Library Robot using Integrated Binocular Vision and QR Code Identification Systems.
    Yu X; Fan Z; Wan H; He Y; Du J; Li N; Yuan Z; Xiao G
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30769857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Orthogonal Optimal Design of Multiple Parameters of a Magnetically Controlled Capsule Robot.
    Tang P; Liang L; Guo Z; Liu Y; Hu G
    Micromachines (Basel); 2021 Jul; 12(7):. PubMed ID: 34357212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.