These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 36467123)

  • 1. Model and Measurements of an Optical Stack for Broadband Visible to Near-Infrared Absorption in TiN MKIDs.
    Kouwenhoven K; Elwakil I; Wingerden JV; Murugesan V; Thoen DJ; Baselmans JJA; Visser PJ
    J Low Temp Phys; 2022; 209(5-6):1249-1257. PubMed ID: 36467123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-absorption optical stack for aluminum kinetic inductance detectors.
    Mai Z; Dai X; Chen Y; Shi Z; Wang H; Pan C; Liu X; Wang Z; Guo W; Wang Y
    Appl Opt; 2023 Jul; 62(19):5294-5300. PubMed ID: 37707234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-format platinum silicide microwave kinetic inductance detectors for optical to near-IR astronomy.
    Szypryt P; Meeker SR; Coiffard G; Fruitwala N; Bumble B; Ulbricht G; Walter AB; Daal M; Bockstiegel C; Collura G; Zobrist N; Lipartito I; Mazin BA
    Opt Express; 2017 Oct; 25(21):25894-25909. PubMed ID: 29041252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing Ti/TiN Multilayers for UV, Optical and Near-IR Microwave Kinetic Inductance Detectors.
    Ulbricht G; De Lucia M; Piercy J; Creaner O; Bracken C; McAleer C; Ray T
    J Low Temp Phys; 2024; 216(1-2):175-184. PubMed ID: 39070764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wafer-scale ultra-broadband perfect absorber based on ultrathin Al-SiO
    Li H; Zhang C; Liu XC; Yu P; Chen WD; Xie ZW; Tang MJ; Zheng J; Li L
    Opt Express; 2022 Aug; 30(17):30911-30917. PubMed ID: 36242186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultra-broadband metamaterial absorber based on cross-shaped TiN resonators.
    Mehrabi S; Rezaei MH; Zarifkar A
    J Opt Soc Am A Opt Image Sci Vis; 2020 Apr; 37(4):697-704. PubMed ID: 32400557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A readout for large arrays of microwave kinetic inductance detectors.
    McHugh S; Mazin BA; Serfass B; Meeker S; O'Brien K; Duan R; Raffanti R; Werthimer D
    Rev Sci Instrum; 2012 Apr; 83(4):044702. PubMed ID: 22559560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the Absorption Spectra of an Ultra-Wideband Metamaterial Absorber in the Visible and Near-Infrared Regions.
    Tharwat MM; Alsulami AR; Mahros AM
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultra-broadband absorbance of nanometer-thin pyrolyzed-carbon film on silicon nitride membrane.
    Jorudas J; Rehman H; Cojocari M; Pashnev D; Urbanowicz A; Kašalynas I; Bertoni B; Vicarelli L; Pitanti A; Malykhin S; Svirko Y; Kuzhir P; Fedorov G
    Nanotechnology; 2024 May; 35(30):. PubMed ID: 38648779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultra-broadband microfiber-coupled superconducting single-photon detector.
    Hou X; Yao N; You L; Li H; Wang Y; Zhang W; Wang H; Liu X; Fang W; Tong L; Wang Z; Xie X
    Opt Express; 2019 Sep; 27(18):25241-25250. PubMed ID: 31510399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High Q-factor near infrared and visible Al
    Beldi S; Boussaha F; Hu J; Monfardini A; Traini A; Levy-Bertrand F; Chaumont C; Gonzales M; Firminy J; Reix F; Rosticher M; Mignot S; Piat M; Bonifacio P
    Opt Express; 2019 Apr; 27(9):13319-13328. PubMed ID: 31052858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large area compatible broadband superabsorber surfaces in the VIS-NIR spectrum utilizing metal-insulator-metal stack and plasmonic nanoparticles.
    Dereshgi SA; Okyay AK
    Opt Express; 2016 Aug; 24(16):17644-53. PubMed ID: 27505733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial.
    Lei L; Li S; Huang H; Tao K; Xu P
    Opt Express; 2018 Mar; 26(5):5686-5693. PubMed ID: 29529770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membraneless Phonon Trapping and Resolution Enhancement in Optical Microwave Kinetic Inductance Detectors.
    Zobrist N; Clay WH; Coiffard G; Daal M; Swimmer N; Day P; Mazin BA
    Phys Rev Lett; 2022 Jul; 129(1):017701. PubMed ID: 35841577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene Metamaterial Embedded within Bundt Optenna for Ultra-Broadband Infrared Enhanced Absorption.
    Awad E
    Nanomaterials (Basel); 2022 Jun; 12(13):. PubMed ID: 35807966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture.
    Ghobadi A; Dereshgi SA; Hajian H; Bozok B; Butun B; Ozbay E
    Sci Rep; 2017 Jul; 7(1):4755. PubMed ID: 28684879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultra-broadband perfect absorber using triple-layer nanofilm in a long-wave near-infrared regime.
    Kuang K; Wang Q; Yuan X; Yu L; Liang Y; Zhang Y; Peng W
    Appl Opt; 2022 Sep; 61(26):7706-7712. PubMed ID: 36256371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low polarization-sensitive ultra-broadband anti-reflection coatings with improved reliability.
    Yang YT; Cai QY; Liu DQ; Gao LS; Zhang HT; Peng L; Hu ET; Liu BJ; Luo HH; Zhang RJ; Zheng YX
    Opt Express; 2023 Jul; 31(16):25477-25489. PubMed ID: 37710433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of the optical properties of a two-layer model of the human head using broadband near-infrared spectroscopy.
    Pucci O; Toronov V; St Lawrence K
    Appl Opt; 2010 Nov; 49(32):6324-32. PubMed ID: 21068864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of an ultra-compact electro-absorption modulator comprised of a deposited TiN/HfO₂/ITO/Cu stack for CMOS backend integration.
    Zhu S; Lo GQ; Kwong DL
    Opt Express; 2014 Jul; 22(15):17930-47. PubMed ID: 25089413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.