These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 36467565)

  • 1. Design and torque control base on neural network PID of a variable stiffness joint for rehabilitation robot.
    Hu B; Mao B; Lu S; Yu H
    Front Neurorobot; 2022; 16():1007324. PubMed ID: 36467565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Patient's Healthy-Limb Motion Characteristic-Based Assist-As-Needed Control Strategy for Upper-Limb Rehabilitation Robots.
    Guo B; Li Z; Huang M; Li X; Han J
    Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and Control of Upper Limb Rehabilitation Training Robot Based on a Magnetorheological Joint Damper.
    Zhu J; Hu H; Zhao W; Yang J; Ouyang Q
    Micromachines (Basel); 2024 Feb; 15(3):. PubMed ID: 38542548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human-robot coupling dynamic modeling and analysis for upper limb rehabilitation robots.
    Xie Q; Meng Q; Dai Y; Zeng Q; Fan Y; Yu H
    Technol Health Care; 2021; 29(4):709-723. PubMed ID: 33386832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel compliant actuator for wearable robotics applications.
    Claros M; Soto R; Rodríguez JJ; Cantú C; Contreras-Vidal JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2854-7. PubMed ID: 24110322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Variable Stiffness Actuator Module With Favorable Mass Distribution for a Bio-inspired Biped Robot.
    Rodriguez-Cianca D; Weckx M; Jimenez-Fabian R; Torricelli D; Gonzalez-Vargas J; Sanchez-Villamañan MC; Sartori M; Berns K; Vanderborght B; Pons JL; Lefeber D
    Front Neurorobot; 2019; 13():20. PubMed ID: 31156418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechatronics design and testing of a cable-driven upper limb rehabilitation exoskeleton with variable stiffness.
    Li Z; Li W; Chen WH; Zhang J; Wang J; Fang Z; Yang G
    Rev Sci Instrum; 2021 Feb; 92(2):024101. PubMed ID: 33648137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selection/control concurrent optimization of BLDC motors for industrial robots.
    Padilla-García EA; Cervantes-Culebro H; Rodriguez-Angeles A; Cruz-Villar CA
    PLoS One; 2023; 18(8):e0289717. PubMed ID: 37585384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human-Robot Cooperative Strength Training Based on Robust Admittance Control Strategy.
    Lin M; Wang H; Yang C; Liu W; Niu J; Vladareanu L
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Novel Pressure-Controlled Revolute Joint with Variable Stiffness.
    Sozer C; Paternò L; Tortora G; Menciassi A
    Soft Robot; 2022 Aug; 9(4):723-733. PubMed ID: 34319839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-Dimensional Printable Ball Joints with Variable Stiffness for Robotic Applications Based on Soft Pneumatic Elastomer Actuators.
    Guo J; Low JH; Liu J; Li Y; Liu Z; Yeow CH
    Polymers (Basel); 2022 Aug; 14(17):. PubMed ID: 36080617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A lobster-inspired bending module for compliant robotic applications.
    Chen Y; Chung H; Chen B; Baoyinjiya ; Sun Y
    Bioinspir Biomim; 2020 Jul; 15(5):056009. PubMed ID: 32531772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis and control of biped robot with variable stiffness ankle joints.
    Lin Z; Zang X; Zhang X; Liu Y; Heng S
    Technol Health Care; 2020; 28(S1):453-462. PubMed ID: 32364178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robustness and Tracking Performance Evaluation of PID Motion Control of 7 DoF Anthropomorphic Exoskeleton Robot Assisted Upper Limb Rehabilitation.
    Ahmed T; Islam MR; Brahmi B; Rahman MH
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elbow training device using the Mechanically Adjustable Stiffness Actuator(MASA).
    Choi J; Son C; Park S; Jung E; Yu D
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():3614-3617. PubMed ID: 30441159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Special section on biomimetics of movement.
    Carpi F; Erb R; Jeronimidis G
    Bioinspir Biomim; 2011 Dec; 6(4):040201. PubMed ID: 22128305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Research on adaptive impedance control technology of upper limb rehabilitation robot based on impedance parameter prediction.
    Zhang Y; Li T; Tao H; Liu F; Hu B; Wu M; Yu H
    Front Bioeng Biotechnol; 2023; 11():1332689. PubMed ID: 38234302
    [No Abstract]   [Full Text] [Related]  

  • 18. Analysis of Stiffness and Energy Consumption of Nonlinear Elastic Joint Legged Robot.
    Chen D; Zhang J; Weng X; Zhang Y; Shi Z
    Appl Bionics Biomech; 2020; 2020():8894399. PubMed ID: 32733598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BioMot exoskeleton - Towards a smart wearable robot for symbiotic human-robot interaction.
    Bacek T; Moltedo M; Langlois K; Prieto GA; Sanchez-Villamanan MC; Gonzalez-Vargas J; Vanderborght B; Lefeber D; Moreno JC
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1666-1671. PubMed ID: 28814059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anti-Disturbance Sliding Mode Control of a Novel Variable Stiffness Actuator for the Rehabilitation of Neurologically Disabled Patients.
    Mo L; Feng P; Shao Y; Shi D; Ju L; Zhang W; Ding X
    Front Robot AI; 2022; 9():864684. PubMed ID: 35585837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.