BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 36467604)

  • 1. Application and prospects of somatic cell reprogramming technology for spinal cord injury treatment.
    Yang R; Pan J; Wang Y; Xia P; Tai M; Jiang Z; Chen G
    Front Cell Neurosci; 2022; 16():1005399. PubMed ID: 36467604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Small molecules reprogram reactive astrocytes into neuronal cells in the injured adult spinal cord.
    Tan Z; Qin S; Liu H; Huang X; Pu Y; He C; Yuan Y; Su Z
    J Adv Res; 2024 May; 59():111-127. PubMed ID: 37380102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo conversion of rat astrocytes into neuronal cells through neural stem cells in injured spinal cord with a single zinc-finger transcription factor.
    Zarei-Kheirabadi M; Hesaraki M; Kiani S; Baharvand H
    Stem Cell Res Ther; 2019 Dec; 10(1):380. PubMed ID: 31842989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo reprogramming of NG2 glia enables adult neurogenesis and functional recovery following spinal cord injury.
    Tai W; Wu W; Wang LL; Ni H; Chen C; Yang J; Zang T; Zou Y; Xu XM; Zhang CL
    Cell Stem Cell; 2021 May; 28(5):923-937.e4. PubMed ID: 33675690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomaterial-supported MSC transplantation enhances cell-cell communication for spinal cord injury.
    Lv B; Zhang X; Yuan J; Chen Y; Ding H; Cao X; Huang A
    Stem Cell Res Ther; 2021 Jan; 12(1):36. PubMed ID: 33413653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuronal reprogramming in treating spinal cord injury.
    Chen X; Li H
    Neural Regen Res; 2022 Jul; 17(7):1440-1445. PubMed ID: 34916416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suppressing CSPG/LAR/PTPσ Axis Facilitates Neuronal Replacement and Synaptogenesis by Human Neural Precursor Grafts and Improves Recovery after Spinal Cord Injury.
    Hosseini SM; Alizadeh A; Shahsavani N; Chopek J; Ahlfors JE; Karimi-Abdolrezaee S
    J Neurosci; 2022 Apr; 42(15):3096-3121. PubMed ID: 35256527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TLR4 Deficiency Impairs Oligodendrocyte Formation in the Injured Spinal Cord.
    Church JS; Kigerl KA; Lerch JK; Popovich PG; McTigue DM
    J Neurosci; 2016 Jun; 36(23):6352-64. PubMed ID: 27277810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mixed primary culture and clonal analysis provide evidence that NG2 proteoglycan-expressing cells after spinal cord injury are glial progenitors.
    Yoo S; Wrathall JR
    Dev Neurobiol; 2007 Jun; 67(7):860-74. PubMed ID: 17506499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NOTCH1 signaling regulates the latent neurogenic program in adult reactive astrocytes after spinal cord injury.
    Tan Z; Qin S; Yuan Y; Hu X; Huang X; Liu H; Pu Y; He C; Su Z
    Theranostics; 2022; 12(10):4548-4563. PubMed ID: 35832093
    [No Abstract]   [Full Text] [Related]  

  • 11. Application of"Spinal cord fusion" in spinal cord injury repair and its neurological mechanism.
    Shen T; Zhang W; Wang X; Ren X
    Heliyon; 2024 Apr; 10(8):e29422. PubMed ID: 38638967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activating Endogenous Neurogenesis for Spinal Cord Injury Repair: Recent Advances and Future Prospects.
    Yu H; Yang S; Li H; Wu R; Lai B; Zheng Q
    Neurospine; 2023 Mar; 20(1):164-180. PubMed ID: 37016865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Therapeutical Strategies for Spinal Cord Injury and a Promising Autologous Astrocyte-Based Therapy Using Efficient Reprogramming Techniques.
    Yang H; Liu CC; Wang CY; Zhang Q; An J; Zhang L; Hao DJ
    Mol Neurobiol; 2016 Jul; 53(5):2826-2842. PubMed ID: 25863960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The P2Y-like receptor GPR17 as a sensor of damage and a new potential target in spinal cord injury.
    Ceruti S; Villa G; Genovese T; Mazzon E; Longhi R; Rosa P; Bramanti P; Cuzzocrea S; Abbracchio MP
    Brain; 2009 Aug; 132(Pt 8):2206-18. PubMed ID: 19528093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epac2 Elevation Reverses Inhibition by Chondroitin Sulfate Proteoglycans
    Guijarro-Belmar A; Viskontas M; Wei Y; Bo X; Shewan D; Huang W
    J Neurosci; 2019 Oct; 39(42):8330-8346. PubMed ID: 31409666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human neural progenitors derived from integration-free iPSCs for SCI therapy.
    Liu Y; Zheng Y; Li S; Xue H; Schmitt K; Hergenroeder GW; Wu J; Zhang Y; Kim DH; Cao Q
    Stem Cell Res; 2017 Mar; 19():55-64. PubMed ID: 28073086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induced Pluripotent Stem Cells for Traumatic Spinal Cord Injury.
    Khazaei M; Ahuja CS; Fehlings MG
    Front Cell Dev Biol; 2016; 4():152. PubMed ID: 28154814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Astrocyte transplantation for repairing the injured spinal cord.
    Zheng X; Wang W
    J Biomed Res; 2022 Jun; 36(5):312-320. PubMed ID: 36056564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Challenges and Efficacy of Astrocyte-to-Neuron Reprogramming in Spinal Cord Injury: In Vitro Insights and In Vivo Outcomes.
    Niceforo A; Zholudeva LV; Fernandes S; Lane MA; Qiang L
    bioRxiv; 2024 Mar; ():. PubMed ID: 38585866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polarized Macrophages Have Distinct Roles in the Differentiation and Migration of Embryonic Spinal-cord-derived Neural Stem Cells After Grafting to Injured Sites of Spinal Cord.
    Zhang K; Zheng J; Bian G; Liu L; Xue Q; Liu F; Yu C; Zhang H; Song B; Chung SK; Ju G; Wang J
    Mol Ther; 2015 Jun; 23(6):1077-1091. PubMed ID: 25794051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.