These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
447 related articles for article (PubMed ID: 36467894)
1. Airborne transmission of biological agents within the indoor built environment: a multidisciplinary review. Argyropoulos CD; Skoulou V; Efthimiou G; Michopoulos AK Air Qual Atmos Health; 2023; 16(3):477-533. PubMed ID: 36467894 [TBL] [Abstract][Full Text] [Related]
2. Air cleaning technologies: an evidence-based analysis. Medical Advisory Secretariat Ont Health Technol Assess Ser; 2005; 5(17):1-52. PubMed ID: 23074468 [TBL] [Abstract][Full Text] [Related]
3. A review of strategies and their effectiveness in reducing indoor airborne transmission and improving indoor air quality. Nair AN; Anand P; George A; Mondal N Environ Res; 2022 Oct; 213():113579. PubMed ID: 35714688 [TBL] [Abstract][Full Text] [Related]
4. The Impact of Heating, Ventilation, and Air-Conditioning Design Features on the Transmission of Viruses, Including SARS-CoV-2: Overview of Reviews. Thornton GM; Kroeker E; Fleck BA; Zhong L; Hartling L Interact J Med Res; 2022 Dec; 11(2):e37232. PubMed ID: 36343208 [TBL] [Abstract][Full Text] [Related]
5. Role of mechanical ventilation in the airborne transmission of infectious agents in buildings. Luongo JC; Fennelly KP; Keen JA; Zhai ZJ; Jones BW; Miller SL Indoor Air; 2016 Oct; 26(5):666-78. PubMed ID: 26562748 [TBL] [Abstract][Full Text] [Related]
6. Automated infection risks assessments (AIRa) for decision-making using a blockchain-based alert system: A case study in a representative building. Wan PK; Huang L; Lai Z; Liu X; Nowostawski M; Holtskog H; Liu Y Environ Res; 2023 Jan; 216(Pt 3):114663. PubMed ID: 36341792 [TBL] [Abstract][Full Text] [Related]
7. Indoor airborne bacterial communities are influenced by ventilation, occupancy, and outdoor air source. Meadow JF; Altrichter AE; Kembel SW; Kline J; Mhuireach G; Moriyama M; Northcutt D; O'Connor TK; Womack AM; Brown GZ; Green JL; Bohannan BJ Indoor Air; 2014 Feb; 24(1):41-8. PubMed ID: 23621155 [TBL] [Abstract][Full Text] [Related]
8. A systematic review and meta-analysis of indoor bioaerosols in hospitals: The influence of heating, ventilation, and air conditioning. Dai R; Liu S; Li Q; Wu H; Wu L; Ji C PLoS One; 2021; 16(12):e0259996. PubMed ID: 34941879 [TBL] [Abstract][Full Text] [Related]
9. Bioaerosols and airborne transmission: Integrating biological complexity into our perspective. Duchaine C; Roy CJ Sci Total Environ; 2022 Jun; 825():154117. PubMed ID: 35218821 [TBL] [Abstract][Full Text] [Related]
10. Summary of human responses to ventilation. Seppänen OA; Fisk WJ Indoor Air; 2004; 14 Suppl 7():102-18. PubMed ID: 15330778 [TBL] [Abstract][Full Text] [Related]
11. The impact of heating, ventilation, and air conditioning design features on the transmission of viruses, including the 2019 novel coronavirus: A systematic review of ultraviolet radiation. Thornton GM; Fleck BA; Fleck N; Kroeker E; Dandnayak D; Zhong L; Hartling L PLoS One; 2022; 17(4):e0266487. PubMed ID: 35395010 [TBL] [Abstract][Full Text] [Related]
12. A spatiotemporally resolved infection risk model for airborne transmission of COVID-19 variants in indoor spaces. Li X; Lester D; Rosengarten G; Aboltins C; Patel M; Cole I Sci Total Environ; 2022 Mar; 812():152592. PubMed ID: 34954184 [TBL] [Abstract][Full Text] [Related]
13. Role of ventilation in airborne transmission of infectious agents in the built environment - a multidisciplinary systematic review. Li Y; Leung GM; Tang JW; Yang X; Chao CY; Lin JZ; Lu JW; Nielsen PV; Niu J; Qian H; Sleigh AC; Su HJ; Sundell J; Wong TW; Yuen PL Indoor Air; 2007 Feb; 17(1):2-18. PubMed ID: 17257148 [TBL] [Abstract][Full Text] [Related]
14. Airborne spread of infectious agents in the indoor environment. Wei J; Li Y Am J Infect Control; 2016 Sep; 44(9 Suppl):S102-8. PubMed ID: 27590694 [TBL] [Abstract][Full Text] [Related]
15. Ventilation strategies and design impacts on indoor airborne transmission: A review. Izadyar N; Miller W Build Environ; 2022 Jun; 218():109158. PubMed ID: 35573806 [TBL] [Abstract][Full Text] [Related]
16. Indoor air as a vehicle for human pathogens: Introduction, objectives, and expectation of outcome. Sattar SA Am J Infect Control; 2016 Sep; 44(9 Suppl):S95-S101. PubMed ID: 27590701 [TBL] [Abstract][Full Text] [Related]
17. Effects of recirculation and air change per hour on COVID-19 transmission in indoor settings: A CFD study with varying HVAC parameters. Islam MT; Chen Y; Seong D; Verhougstraete M; Son YJ Heliyon; 2024 Aug; 10(15):e35092. PubMed ID: 39170199 [TBL] [Abstract][Full Text] [Related]
18. Numerical investigation on indoor environment decontamination after sneezing. Kumar S; King MD Environ Res; 2022 Oct; 213():113665. PubMed ID: 35714690 [TBL] [Abstract][Full Text] [Related]
19. An overview of solutions for airborne viral transmission reduction related to HVAC systems including liquid desiccant air-scrubbing. Giampieri A; Ma Z; Ling-Chin J; Roskilly AP; Smallbone AJ Energy (Oxf); 2022 Apr; 244():122709. PubMed ID: 34840405 [TBL] [Abstract][Full Text] [Related]
20. Monitoring and Assessment of Indoor Environmental Conditions in Educational Building Using Building Information Modelling Methodology. Aguilar AJ; de la Hoz-Torres ML; Ruiz DP; Martínez-Aires MD Int J Environ Res Public Health; 2022 Oct; 19(21):. PubMed ID: 36360631 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]