These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 36467955)

  • 1. Numerical Study on the Effect of an Improved Three-Partition Baffle Flow Field on Proton Exchange Membrane Fuel Cell Performance.
    Deng X; Zhang E; Lei J; Jia D; Liu Y; Shuchao HE
    ACS Omega; 2022 Nov; 7(47):42872-42882. PubMed ID: 36467955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of the Design and Optimization of Trapezoidal Channels and Baffles (Number and Position) on the Net Power Density of Proton-Exchange Membrane Fuel Cells.
    Xu C; Wang H; Li Z; Cheng T
    ACS Omega; 2022 Feb; 7(5):4214-4223. PubMed ID: 35155914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance Studies of Proton Exchange Membrane Fuel Cells with Different Flow Field Designs - Review.
    Marappan M; Palaniswamy K; Velumani T; Chul KB; Velayutham R; Shivakumar P; Sundaram S
    Chem Rec; 2021 Apr; 21(4):663-714. PubMed ID: 33543591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alternating Flow Field Design Improves the Performance of Proton Exchange Membrane Fuel Cells.
    Qin Z; Huo W; Bao Z; Tongsh C; Wang B; Du Q; Jiao K
    Adv Sci (Weinh); 2023 Feb; 10(4):e2205305. PubMed ID: 36470593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Gas Diffusion Layer Notch Arrangement and Gradient Depth on the Performance of Proton Exchange Membrane Fuel Cells in the Serpentine Flow Field.
    Zhang H; Zhang L; Zhang Y; Hou Z; Liu J
    ACS Omega; 2023 Mar; 8(11):10191-10201. PubMed ID: 36969400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of baffle structure on flow field characteristics of orbitally shaken bioreactor.
    Lu Z; Li C; Fei L; Zhang H; Pan Y
    Bioprocess Biosyst Eng; 2021 Mar; 44(3):563-573. PubMed ID: 33200292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pore-Scale Modeling of Microporous Layer for Proton Exchange Membrane Fuel Cell: Effective Transport Properties.
    Zhang H; Shao X; Zhan Z; Sarker M; Sui PC; Chuang PA; Pan M
    Membranes (Basel); 2023 Feb; 13(2):. PubMed ID: 36837722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scaling Up Studies on PEMFC Using a Modified Serpentine Flow Field Incorporating Porous Sponge Inserts to Observe Water Molecules.
    Marappan M; Narayanan R; Manoharan K; Vijayakrishnan MK; Palaniswamy K; Karazhanov S; Sundaram S
    Molecules; 2021 Jan; 26(2):. PubMed ID: 33430043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The study on a new method of preparing PMMA forming composite bipolar plate.
    Wu SD; Chiou AH
    Sci Rep; 2021 Apr; 11(1):8753. PubMed ID: 33888825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical Analysis of the Effect of Liquid Water during Switching Mode for Unitised Regenerative Proton Exchange Membrane Fuel Cell.
    Low HC; Lim BH
    Membranes (Basel); 2023 Mar; 13(4):. PubMed ID: 37103817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-Dimensional Transport Modeling for Proton Exchange Membrane(PEM) Fuel Cell with Micro Parallel Flow Field.
    Lee PH; Han SS; Hwang SS
    Sensors (Basel); 2008 Mar; 8(3):1475-1487. PubMed ID: 27879774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Baffle Clearance on Scale Deposition in an Agitated Vessel.
    Sato E; Ochi Y; Horiguchi H; Takenaka K; Wu J; Parthasarathy R; Komoda Y; Ohmura N
    ACS Omega; 2021 Sep; 6(37):24070-24074. PubMed ID: 34568685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental Investigation on the Anode Flow Field Design for an Air-Cooled Open-Cathode Proton Exchange Membrane Fuel Cell.
    Deng Z; Li B; Xing S; Zhao C; Wang H
    Membranes (Basel); 2022 Oct; 12(11):. PubMed ID: 36363624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Porous Flow Field for Next-Generation Proton Exchange Membrane Fuel Cells: Materials, Characterization, Design, and Challenges.
    Zhang G; Qu Z; Tao WQ; Wang X; Wu L; Wu S; Xie X; Tongsh C; Huo W; Bao Z; Jiao K; Wang Y
    Chem Rev; 2023 Feb; 123(3):989-1039. PubMed ID: 36580359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexible Five-in-One Microsensor for Real-Time Wireless Microscopic Diagnosis inside Electric Motorcycle Fuel Cell Stack Range Extender.
    Lee CY; Chen CH; Lee TJ; Cheong JS; Liu YC; Chen YC
    Micromachines (Basel); 2021 Jan; 12(2):. PubMed ID: 33494440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental and Numerical Study of Proton Exchange Membrane Fuel Cells with a Novel Compound Flow Field.
    Wang Y; Wang L; Ji X; Zhou Y; Wu M
    ACS Omega; 2021 Aug; 6(34):21892-21899. PubMed ID: 34497884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental investigation of hydraulic characteristics and energy dissipation in a baffle-drop shaft.
    Yang Q; Yang Q
    Water Sci Technol; 2020 Oct; 82(8):1603-1613. PubMed ID: 33107854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Hybrid Method for Performance Degradation Probability Prediction of Proton Exchange Membrane Fuel Cell.
    Hu Y; Zhang L; Jiang Y; Peng K; Jin Z
    Membranes (Basel); 2023 Apr; 13(4):. PubMed ID: 37103853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance Analysis and Optimization of a High-Temperature PEMFC Vehicle Based on Particle Swarm Optimization Algorithm.
    Li Y; Ma Z; Zheng M; Li D; Lu Z; Xu B
    Membranes (Basel); 2021 Sep; 11(9):. PubMed ID: 34564508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical investigation of obstacle's effect on the performance of proton-exchange membrane fuel cell: studying the shape of obstacles.
    Ebrahimzadeh AA; Khazaee I; Fasihfar A
    Heliyon; 2019 May; 5(5):e01764. PubMed ID: 31193482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.