These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 36468144)

  • 1. Polarization beam splitting in a Glan-Taylor prism based on dual effects of both birefringence and Goos-Hanchen shift.
    Li D; Cai G; Song C; Weng C; Chen C; Zheng W; Zhang Y; Li K
    Heliyon; 2022 Nov; 8(11):e11754. PubMed ID: 36468144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum-well enhancement of the Goos-Hänchen shift for p-polarized beams in a two-prism configuration.
    Broe J; Keller O
    J Opt Soc Am A Opt Image Sci Vis; 2002 Jun; 19(6):1212-22. PubMed ID: 12049360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Goos-Hänchen effect in epsilon-near-zero metamaterials.
    Xu Y; Chan CT; Chen H
    Sci Rep; 2015 Mar; 5():8681. PubMed ID: 25731726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Collinear heterodyne interferometer technique for measuring Goos-Hänchen shift.
    Zhang W; Zhang Z
    Appl Opt; 2018 Nov; 57(31):9346-9350. PubMed ID: 30461974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous Goos-Hänchen Shift of Vortex Beam via Symmetric Metal-Cladding Waveguide.
    Kan XF; Zou ZX; Yin C; Xu HP; Wang XP; Han QB; Cao ZQ
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strong enhancement of Goos-Hänchen shift through the resonant optical tunneling effect.
    Xiang L; Liu W; Wei Z; Meng H; Liu H; Guo J; Zhi Y; Huang Z; Li H; Wang F
    Opt Express; 2022 Dec; 30(26):47338-47349. PubMed ID: 36558664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Goos-Hänchen shifts at the interfaces between left- and right-handed media.
    Qing DK; Chen G
    Opt Lett; 2004 Apr; 29(8):872-4. PubMed ID: 15119406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nearly three orders of magnitude enhancement of Goos-Hanchen shift by exciting Bloch surface wave.
    Wan Y; Zheng Z; Kong W; Zhao X; Liu Y; Bian Y; Liu J
    Opt Express; 2012 Apr; 20(8):8998-9003. PubMed ID: 22513610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of Goos-Hänchen shift due to a Rydberg state.
    Asadpour SH; Hamedi HR; Jafari M
    Appl Opt; 2018 May; 57(15):4013-4019. PubMed ID: 29791374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunable and enhanced Goos-Hänchen shift via surface plasmon resonance assisted by a coherent medium.
    Wan RG; Zubairy MS
    Opt Express; 2020 Mar; 28(5):6036-6047. PubMed ID: 32225861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eigenpolarizations for giant transverse optical beam shifts.
    Götte JB; Löffler W; Dennis MR
    Phys Rev Lett; 2014 Jun; 112(23):233901. PubMed ID: 24972208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shifting beams at normal incidence via controlling momentum-space geometric phases.
    Wang J; Zhao M; Liu W; Guan F; Liu X; Shi L; Chan CT; Zi J
    Nat Commun; 2021 Oct; 12(1):6046. PubMed ID: 34663832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Observation of the Goos-Hänchen shift with neutrons.
    de Haan VO; Plomp J; Rekveldt TM; Kraan WH; van Well AA; Dalgliesh RM; Langridge S
    Phys Rev Lett; 2010 Jan; 104(1):010401. PubMed ID: 20366352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling the Goos-Hänchen shift in a double prism structure using three-level Raman gain medium.
    Asiri S; Wang LG
    Sci Rep; 2023 Dec; 13(1):22780. PubMed ID: 38123654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Angularly symmetric splitting of a light beam upon reflection and refraction at an air-dielectric plane boundary.
    Azzam RM
    J Opt Soc Am A Opt Image Sci Vis; 2015 Dec; 32(12):2436-9. PubMed ID: 26831398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of beam propagation in Goos-Hänchen and Imbert-Fedorov shifts.
    Aiello A; Woerdman JP
    Opt Lett; 2008 Jul; 33(13):1437-9. PubMed ID: 18594657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observation of Goos-Hänchen shifts in metallic reflection.
    Merano M; Aiello A; 't Hooft GW; van Exter MP; Eliel ER; Woerdman JP
    Opt Express; 2007 Nov; 15(24):15928-34. PubMed ID: 19550880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Giant negative Goos-Hänchen shifts for a photonic crystal with a negative effective index.
    He J; Yi J; He S
    Opt Express; 2006 Apr; 14(7):3024-9. PubMed ID: 19516442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Weak measurement of the composite Goos-Hänchen shift in the critical region.
    Santana OJ; Carvalho SA; De Leo S; de Araujo LE
    Opt Lett; 2016 Aug; 41(16):3884-7. PubMed ID: 27519114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and performance analysis of a single-unit polarizing beam-splitting prism based on negative refraction in a uniaxial crystal.
    Wu W; Han P; Shi M; Su F; Wu F
    Appl Opt; 2019 Sep; 58(26):7063-7066. PubMed ID: 31503976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.