BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 36468235)

  • 1. Fluorescent probes based on the core-shell structure of molecular imprinted materials and gold nanoparticles for highly selective glutathione detection.
    Wu G; Zhao Y; Li X; Lu X; Qu T
    Anal Methods; 2022 Dec; 14(48):5034-5040. PubMed ID: 36468235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly selective colorimetric determination of glutathione based on sandwich-structured nanoenzymes composed of gold nanoparticle-coated molecular imprinted metal-organic frameworks.
    Lu X; Yan L; Zhou X; Qu T
    Mikrochim Acta; 2024 Feb; 191(3):140. PubMed ID: 38363397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anti-aggregation of gold nanoparticle-based colorimetric sensor for glutathione with excellent selectivity and sensitivity.
    Li Y; Wu P; Xu H; Zhang H; Zhong X
    Analyst; 2011 Jan; 136(1):196-200. PubMed ID: 20931106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A dual-mode nanosensor based on carbon quantum dots and gold nanoparticles for discriminative detection of glutathione in human plasma.
    Shi Y; Pan Y; Zhang H; Zhang Z; Li MJ; Yi C; Yang M
    Biosens Bioelectron; 2014 Jun; 56():39-45. PubMed ID: 24462829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A sensitive fluorescence "turn on" nanosensor for glutathione detection based on Ce-MOF and gold nanoparticles.
    Gong C; Li Z; Liu G; Wang R; Pu S
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Jan; 265():120362. PubMed ID: 34509887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecularly imprinted polymers enhanced peroxidase-like activity of AuNPs for determination of glutathione.
    Zhang X; Peng J; Xi L; Lu Z; Yu L; Liu M; Huo D; He H
    Mikrochim Acta; 2022 Nov; 189(12):457. PubMed ID: 36417016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A sensitive and rapid detection of glutathione based on a fluorescence-enhanced "turn-on" strategy.
    Ma Q; Wang M; Cai H; Li F; Fu S; Liu Y; Zhao Y
    J Mater Chem B; 2021 Apr; 9(16):3563-3572. PubMed ID: 33909744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glutathione regulation-based dual-functional upconversion sensing-platform for acetylcholinesterase activity and cadmium ions.
    Fang A; Chen H; Li H; Liu M; Zhang Y; Yao S
    Biosens Bioelectron; 2017 Jan; 87():545-551. PubMed ID: 27611473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A label-free turn-on-off fluorescent sensor for the sensitive detection of cysteine via blocking the Ag
    Li Y; Deng Y; Zhou X; Hu J
    Talanta; 2018 Mar; 179():742-752. PubMed ID: 29310302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence turn-off-on for highly selective detection of serum l-cysteine based on AuNCs-AuNPs ensembles.
    Li X; Qiao J; Li Z; Qi L
    Analyst; 2020 Mar; 145(6):2233-2237. PubMed ID: 32064468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. "Turn-off" sensing probe based on fluorescent gold nanoclusters for the sensitive detection of hemin.
    Fereja SL; Fang Z; Li P; Guo J; Fereja TH; Chen W
    Anal Bioanal Chem; 2021 Mar; 413(6):1639-1649. PubMed ID: 33483839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gold nanocluster-based fluorescence sensing probes for detection of dipicolinic acid.
    Baig MMF; Chen YC
    Analyst; 2019 May; 144(10):3289-3296. PubMed ID: 30949633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of Tetracycline in Water Using Glutathione-protected Fluorescent Gold Nanoclusters.
    Liu D; Pan X; Mu W; Li C; Han X
    Anal Sci; 2019 Apr; 35(4):367-370. PubMed ID: 30504651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence resonance energy transfer between NH
    Sun L; Wang T; Sun Y; Li Z; Song H; Zhang B; Zhou G; Zhou H; Hu J
    Talanta; 2020 Jan; 207():120294. PubMed ID: 31594563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface-imprinted core-shell Au nanoparticles for selective detection of bisphenol A based on surface-enhanced Raman scattering.
    Xue JQ; Li DW; Qu LL; Long YT
    Anal Chim Acta; 2013 May; 777():57-62. PubMed ID: 23622965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescent Indicator Displacement Assay: Ultrasensitive Detection of Glutathione and Selective Cancer Cell Imaging.
    Das K; Sarkar S; Das PK
    ACS Appl Mater Interfaces; 2016 Oct; 8(39):25691-25701. PubMed ID: 27618963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A fluorescent sensor to detect sodium dodecyl sulfate based on the glutathione-stabilized gold nanoclusters/poly diallyldimethylammonium chloride system.
    Zheng CL; Ji ZX; Zhang J; Ding SN
    Analyst; 2014 Jul; 139(13):3476-80. PubMed ID: 24862984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A copper-mediated on-off-on gold nanocluster for endogenous GSH sensing to drive cancer cell recognition.
    Zhao H; Wen X; Li W; Li Y; Yin C
    J Mater Chem B; 2019 Apr; 7(13):2169-2176. PubMed ID: 32073576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Colorimetric Sensor for the Visual Detection of Azodicarbonamide in Flour Based on Azodicarbonamide-Induced Anti-Aggregation of Gold Nanoparticles.
    Chen Z; Chen L; Lin L; Wu Y; Fu F
    ACS Sens; 2018 Oct; 3(10):2145-2151. PubMed ID: 30239191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward selective, sensitive, and discriminative detection of Hg(2+) and Cd(2+)via pH-modulated surface chemistry of glutathione-capped gold nanoclusters.
    Huang P; Li S; Gao N; Wu F
    Analyst; 2015 Nov; 140(21):7313-21. PubMed ID: 26347906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.