BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 36468670)

  • 1. Potential use of bioactive nanofibrous dural substitutes with controlled release of IGF-1 for neuroprotection after traumatic brain injury.
    Wang Y; Guo Q; Wang W; Wang Y; Fang K; Wan Q; Li H; Wu T
    Nanoscale; 2022 Dec; 14(48):18217-18230. PubMed ID: 36468670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and Fabrication of Nanofibrous Dura Mater with Antifibrosis and Neuroprotection Effects on SH-SY5Y Cells.
    Zhao Z; Wu T; Cui Y; Zhao R; Wan Q; Xu R
    Polymers (Basel); 2022 May; 14(9):. PubMed ID: 35567051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of controlled degradation of insulin-like growth factor 1/spider silk protein nanofibrous membrane and its effect on endothelial progenitor cell viability.
    Chen L; Huang Y; Yang R; Xiao J; Gao J; Zhang D; Cao D; Ke X
    Bioengineered; 2021 Dec; 12(1):8031-8042. PubMed ID: 34670479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrospun Nanofibers for Dura Mater Regeneration: A Mini Review on Current Progress.
    Pant B; Park M; Kim AA
    Pharmaceutics; 2023 Apr; 15(5):. PubMed ID: 37242589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Astrocyte-Specific Overexpression of Insulin-Like Growth Factor-1 Protects Hippocampal Neurons and Reduces Behavioral Deficits following Traumatic Brain Injury in Mice.
    Madathil SK; Carlson SW; Brelsfoard JM; Ye P; D'Ercole AJ; Saatman KE
    PLoS One; 2013; 8(6):e67204. PubMed ID: 23826235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional endothelial cell incorporation within bioactive nanofibrous scaffolds through concurrent emulsion electrospinning and coaxial cell electrospraying.
    Zhao Q; Zhou Y; Wang M
    Acta Biomater; 2021 Mar; 123():312-324. PubMed ID: 33508508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust Electrospun Nanofibers from Chemosynthetic Poly(4-hydroxybutyrate) as Artificial Dural Substitute.
    Ma H; Sun Y; Tang Y; Shen Y; Kan Z; Li Q; Fang S; Lu Y; Zhou X; Li Z
    Macromol Biosci; 2021 Jul; 21(7):e2100134. PubMed ID: 33955128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosubstitutes for dural closure: Unveiling research, application, and future prospects of dura mater alternatives.
    Khurana D; Suresh A; Nayak R; Shetty M; Sarda RK; Knowles JC; Kim HW; Singh RK; Singh BN
    J Tissue Eng; 2024; 15():20417314241228118. PubMed ID: 38343772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanostructured Hydrogels by Blend Electrospinning of Polycaprolactone/Gelatin Nanofibers.
    Daelemans L; Steyaert I; Schoolaert E; Goudenhooft C; Rahier H; De Clerck K
    Nanomaterials (Basel); 2018 Jul; 8(7):. PubMed ID: 30036979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of systemic administration of PEGylated IGF-1 in a mouse model of traumatic brain injury.
    Sama DM; Carlson SW; Joseph B; Saenger S; Metzger F; Saatman KE
    Restor Neurol Neurosci; 2018; 36(4):559-569. PubMed ID: 29889090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Melanin incorporated electroactive and antioxidant silk fibroin nanofibrous scaffolds for nerve tissue engineering.
    Nune M; Manchineella S; T G; K S N
    Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():17-25. PubMed ID: 30423699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gangliosides inhibit growth factor-stimulated neurite outgrowth in SH-SY5Y human neuroblastoma cells.
    Hynds DL; Burry RW; Yates AJ
    J Neurosci Res; 1997 Mar; 47(6):617-25. PubMed ID: 9089210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dura mater regeneration with a novel synthetic, bilayered nanofibrous dural substitute: an experimental study.
    Kurpinski K; Patel S
    Nanomedicine (Lond); 2011 Feb; 6(2):325-37. PubMed ID: 21385135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aligned PLLA nanofibrous scaffolds coated with graphene oxide for promoting neural cell growth.
    Zhang K; Zheng H; Liang S; Gao C
    Acta Biomater; 2016 Jun; 37():131-42. PubMed ID: 27063493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insulin-like growth factor-I-dependent signal transduction pathways leading to the induction of cell growth and differentiation of human neuroblastoma cell line SH-SY5Y: the roles of MAP kinase pathway and PI 3-kinase pathway.
    Kurihara S; Hakuno F; Takahashi S
    Endocr J; 2000 Dec; 47(6):739-51. PubMed ID: 11228049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and manufacture of neural tissue engineering scaffolds using hyaluronic acid and polycaprolactone nanofibers with controlled porosity.
    Entekhabi E; Haghbin Nazarpak M; Moztarzadeh F; Sadeghi A
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():380-7. PubMed ID: 27612726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering PCL/lignin nanofibers as an antioxidant scaffold for the growth of neuron and Schwann cell.
    Wang J; Tian L; Luo B; Ramakrishna S; Kai D; Loh XJ; Yang IH; Deen GR; Mo X
    Colloids Surf B Biointerfaces; 2018 Sep; 169():356-365. PubMed ID: 29803151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Safety of the nonabsorbable dural substitute in decompressive craniectomy for severe traumatic brain injury.
    Huang YH; Lee TC; Chen WF; Wang YM
    J Trauma; 2011 Sep; 71(3):533-7. PubMed ID: 21768912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multilayer scaffold of electrospun PLA-PCL-collagen nanofibers as a dural substitute.
    Wang YF; Guo HF; Ying DJ
    J Biomed Mater Res B Appl Biomater; 2013 Nov; 101(8):1359-66. PubMed ID: 23687083
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.