These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 36468706)

  • 1. Use of Dual Optical Tweezers and Microfluidics for Single-Molecule Studies.
    Bianco PR
    J Vis Exp; 2022 Nov; (189):. PubMed ID: 36468706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing DNA-DNA Interactions with a Combination of Quadruple-Trap Optical Tweezers and Microfluidics.
    Brouwer I; King GA; Heller I; Biebricher AS; Peterman EJG; Wuite GJL
    Methods Mol Biol; 2017; 1486():275-293. PubMed ID: 27844432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring protein-DNA interactions in 3D using in situ construction, manipulation and visualization of individual DNA dumbbells with optical traps, microfluidics and fluorescence microscopy.
    Forget AL; Dombrowski CC; Amitani I; Kowalczykowski SC
    Nat Protoc; 2013 Mar; 8(3):525-38. PubMed ID: 23411634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Versatile Quadruple-Trap Optical Tweezers for Dual DNA Experiments.
    Heller I; Laurens N; Vorselen D; Broekmans OD; Biebricher AS; King GA; Brouwer I; Wuite GJL; Peterman EJG
    Methods Mol Biol; 2017; 1486():257-272. PubMed ID: 27844431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Advances in Biological Single-Molecule Applications of Optical Tweezers and Fluorescence Microscopy.
    Hashemi Shabestari M; Meijering AEC; Roos WH; Wuite GJL; Peterman EJG
    Methods Enzymol; 2017; 582():85-119. PubMed ID: 28062046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface Functionalization, Nucleic Acid Tether Characterization, and Force Calibration for a Magnetic Tweezers Assay.
    Quack S; Dulin D
    Methods Mol Biol; 2024; 2694():403-420. PubMed ID: 37824015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bio-Molecular Applications of Recent Developments in Optical Tweezers.
    Choudhary D; Mossa A; Jadhav M; Cecconi C
    Biomolecules; 2019 Jan; 9(1):. PubMed ID: 30641944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA unzipping and force measurements with a dual optical trap.
    Cissé I; Mangeol P; Bockelmann U
    Methods Mol Biol; 2011; 783():45-61. PubMed ID: 21909882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical force sensor array in a microfluidic device based on holographic optical tweezers.
    Uhrig K; Kurre R; Schmitz C; Curtis JE; Haraszti T; Clemen AE; Spatz JP
    Lab Chip; 2009 Mar; 9(5):661-8. PubMed ID: 19224015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Manipulating rod-shaped bacteria with optical tweezers.
    Zhang Z; Kimkes TEP; Heinemann M
    Sci Rep; 2019 Dec; 9(1):19086. PubMed ID: 31836805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining optical tweezers, single-molecule fluorescence microscopy, and microfluidics for studies of DNA-protein interactions.
    Gross P; Farge G; Peterman EJ; Wuite GJ
    Methods Enzymol; 2010; 475():427-53. PubMed ID: 20627167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On-chip supercontinuum optical trapping and resonance excitation of microspheres.
    Nitkowski A; Gondarenko A; Lipson M
    Opt Lett; 2010 May; 35(10):1626-8. PubMed ID: 20479830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogel Droplet Microfluidics for High-Throughput Single Molecule/Cell Analysis.
    Zhu Z; Yang CJ
    Acc Chem Res; 2017 Jan; 50(1):22-31. PubMed ID: 28029779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An optically driven pump for microfluidics.
    Leach J; Mushfique H; di Leonardo R; Padgett M; Cooper J
    Lab Chip; 2006 Jun; 6(6):735-9. PubMed ID: 16738723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNA Unzipping and Force Measurements with a Dual Optical Trap.
    Geffroy L; Mangeol P; Bizebard T; Bockelmann U
    Methods Mol Biol; 2018; 1665():25-41. PubMed ID: 28940062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generating Negatively Supercoiled DNA Using Dual-Trap Optical Tweezers.
    King GA; Spakman D; Peterman EJG; Wuite GJL
    Methods Mol Biol; 2022; 2478():243-272. PubMed ID: 36063323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Paper-thin multilayer microfluidic devices with integrated valves.
    Kim S; Dorlhiac G; Cotrim Chaves R; Zalavadia M; Streets A
    Lab Chip; 2021 Apr; 21(7):1287-1298. PubMed ID: 33690757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining optical trapping, fluorescence microscopy and micro-fluidics for single molecule studies of DNA-protein interactions.
    Candelli A; Wuite GJ; Peterman EJ
    Phys Chem Chem Phys; 2011 Apr; 13(16):7263-72. PubMed ID: 21416086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the Stiffness of Multiple Particles Trapped by Dielectrophoretic Tweezers in a Microfluidic Device.
    Son M; Choi S; Ko KH; Kim MH; Lee SY; Key J; Yoon YR; Park IS; Lee SW
    Langmuir; 2016 Jan; 32(3):922-7. PubMed ID: 26734855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct Fluorescent Imaging of Translocation and Unwinding by Individual DNA Helicases.
    Pavankumar TL; Exell JC; Kowalczykowski SC
    Methods Enzymol; 2016; 581():1-32. PubMed ID: 27793277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.