These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 36468874)

  • 1. Visible Light Accelerates Cr(III) Release and Oxidation in Cr-Fe Chromite Residues: An Overlooked Risk of Cr(VI) Reoccurrence.
    Lei D; Gou C; Wang C; Xue J; Zhang Z; Liu W; Lin Z; Zhang J
    Environ Sci Technol; 2022 Dec; 56(24):17674-17683. PubMed ID: 36468874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Different Pathways for Cr(III) Oxidation: Implications for Cr(VI) Reoccurrence in Reduced Chromite Ore Processing Residue.
    Liu W; Li J; Zheng J; Song Y; Shi Z; Lin Z; Chai L
    Environ Sci Technol; 2020 Oct; 54(19):11971-11979. PubMed ID: 32905702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction between chromite and Mn(II/IV) under anoxic, oxic and anoxic-oxic conditions: Dissolution, oxidation and pH dependence.
    Ao M; Sun S; Deng T; Li J; Liu T; Tang Y; Wang S; Qiu R
    J Environ Manage; 2024 Jan; 349():119475. PubMed ID: 37922821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Natural source of Cr(VI) in soil: The anoxic oxidation of Cr(III) by Mn oxides.
    Ao M; Sun S; Deng T; Zhang F; Liu T; Tang Y; Li J; Wang S; Qiu R
    J Hazard Mater; 2022 Jul; 433():128805. PubMed ID: 35381512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A mechanism study of light-induced Cr(VI) reduction in an acidic solution.
    Wang SL; Chen CC; Tzou YM; Hsu CL; Chen JH; Lin CF
    J Hazard Mater; 2009 May; 164(1):223-8. PubMed ID: 18789578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of Cr(VI) speciation in ferrous sulfate-reduced chromite ore processing residue (rCOPR) and impacts of environmental factors erosion on Cr(VI) leaching.
    Song Y; Li J; Peng M; Deng Z; Yang J; Liu W; Shi Z; Lin Z
    J Hazard Mater; 2019 Jul; 373():389-396. PubMed ID: 30933861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromium(VI) formation via heating of Cr(III)-Fe(III)-(oxy)hydroxides: A pathway for fire-induced soil pollution.
    Burton ED; Choppala G; Vithana CL; Karimian N; Hockmann K; Johnston SG
    Chemosphere; 2019 May; 222():440-444. PubMed ID: 30716546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sorption of phosphate and Cr(VI) by Fe(III) and Cr(III) hydroxides.
    Tzou YM; Wang MK; Loeppert RH
    Arch Environ Contam Toxicol; 2003 May; 44(4):445-53. PubMed ID: 12712274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New Insight into the Natural Detoxification of Cr(VI) in Fe-Rich Surface Soil: Crucial Role of Photogenerated Silicate-Bound Fe(II).
    Zhang Z; Ren J; Liang J; Xu X; Zhao L; Qiu H; Li H; Cao X
    Environ Sci Technol; 2023 Dec; 57(50):21370-21381. PubMed ID: 37946506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibited Cr(VI) reduction by aqueous Fe(II) under hyperalkaline conditions.
    He YT; Chen CC; Traina SJ
    Environ Sci Technol; 2004 Nov; 38(21):5535-9. PubMed ID: 15575269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A XAFS study of plain and composite iron(III) and chromium(III) hydroxides.
    Papassiopi N; Pinakidou F; Katsikini M; Antipas GS; Christou C; Xenidis A; Paloura EC
    Chemosphere; 2014 Sep; 111():169-76. PubMed ID: 24997915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cr(vi) uptake and reduction by biogenic iron (oxyhydr)oxides.
    Whitaker AH; Peña J; Amor M; Duckworth OW
    Environ Sci Process Impacts; 2018 Jul; 20(7):1056-1068. PubMed ID: 29922797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leaching mechanisms of Cr(VI) from chromite ore processing residue.
    Wazne M; Jagupilla SC; Moon DH; Christodoulatos C; Koutsospyros A
    J Environ Qual; 2008; 37(6):2125-34. PubMed ID: 18948466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An X-ray absorption spectroscopic study of the Fe(II)-induced transformation of Cr(VI)-substituted schwertmannite.
    Choppala G; Karimian N; Burton ED
    J Hazard Mater; 2022 Jun; 431():128580. PubMed ID: 35359110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromium remediation or release? Effect of iron(II) sulfate addition on chromium(VI) leaching from columns of chromite ore processing residue.
    Geelhoed JS; Meeussen JC; Roe MJ; Hillier S; Thomas RP; Farmer JG; Paterson E
    Environ Sci Technol; 2003 Jul; 37(14):3206-13. PubMed ID: 12901671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparative study of oxidation of Cr(III) in aqueous ions, complex ions and insoluble compounds by manganese-bearing mineral (birnessite).
    Dai R; Liu J; Yu C; Sun R; Lan Y; Mao JD
    Chemosphere; 2009 Jul; 76(4):536-41. PubMed ID: 19342077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of inorganic anion on Cr(VI) photo-reduction in the presence of ferric ion.
    Tzou YM; Hsu CL; Chen CC; Chen JH; Wu JJ; Tseng KJ
    J Hazard Mater; 2008 Aug; 156(1-3):374-80. PubMed ID: 18249065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solar irradiation accelerates the oxidation of Cr(III) by δ-manganese dioxide.
    Sun X; Mao M; Zheng Z; Wang J; Wu Z; Li X; Lin Z; Liu W
    J Hazard Mater; 2023 Feb; 443(Pt A):130150. PubMed ID: 36257107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new pathway for hexavalent chromium formation in soil: Fire-induced alteration of iron oxides.
    Burton ED; Choppala G; Karimian N; Johnston SG
    Environ Pollut; 2019 Apr; 247():618-625. PubMed ID: 30711817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rates of Cr(VI) Generation from Cr
    Pan C; Liu H; Catalano JG; Qian A; Wang Z; Giammar DE
    Environ Sci Technol; 2017 Nov; 51(21):12416-12423. PubMed ID: 29043792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.