These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 36468907)
1. Detection of the Dark States in Thermally Activated Delayed Fluorescence (TADF) Process of Electron Donor-Acceptor Dyads: Insights from Optical Transient Absorption Spectroscopy. Zhang X; Zhao X; Ye K; Zhao J Chemistry; 2023 Mar; 29(16):e202203737. PubMed ID: 36468907 [TBL] [Abstract][Full Text] [Related]
2. The effect of dark states on the intersystem crossing and thermally activated delayed fluorescence of naphthalimide-phenothiazine dyads. Cao L; Liu X; Zhang X; Zhao J; Yu F; Wan Y Beilstein J Org Chem; 2023; 19():1028-1046. PubMed ID: 37497052 [TBL] [Abstract][Full Text] [Related]
3. Observation of Long-Lived Charge-Separated States in Anthraquinone-Phenothiazine Electron Donor-Acceptor Dyads: Transient Optical and Electron Paramagnetic Resonance Spectroscopic Studies. Yu Z; Sukhanov AA; Xiao X; Iagatti A; Doria S; Butera V; Zhao J; Voronkova VK; Di Donato M; Mazzone G J Phys Chem B; 2023 Jul; 127(26):5905-5923. PubMed ID: 37352509 [TBL] [Abstract][Full Text] [Related]
4. Naphthalimide-phenothiazine dyads: effect of conformational flexibility and matching of the energy of the charge-transfer state and the localized triplet excited state on the thermally activated delayed fluorescence. Ye K; Cao L; van Raamsdonk DME; Wang Z; Zhao J; Escudero D; Jacquemin D Beilstein J Org Chem; 2022; 18():1435-1453. PubMed ID: 36300011 [TBL] [Abstract][Full Text] [Related]
5. Red Light-Emitting Thermally-Activated Delayed Fluorescence of Naphthalimide-Phenoxazine Electron Donor-Acceptor Dyad: Time-Resolved Optical and Magnetic Spectroscopic Studies. Zhang X; Liu X; Taddei M; Bussotti L; Kurganskii I; Li M; Jiang X; Xing L; Ji S; Huo Y; Zhao J; Di Donato M; Wan Y; Zhao Z; Fedin MV Chemistry; 2022 Jul; 28(37):e202200510. PubMed ID: 35438811 [TBL] [Abstract][Full Text] [Related]
6. Regulating the Nature of Triplet Excited States of Thermally Activated Delayed Fluorescence Emitters. Zhao Z; Yan S; Ren Z Acc Chem Res; 2023 Jul; 56(14):1942-1952. PubMed ID: 37364229 [TBL] [Abstract][Full Text] [Related]
7. The Role of Local Triplet Excited States and D-A Relative Orientation in Thermally Activated Delayed Fluorescence: Photophysics and Devices. Dias FB; Santos J; Graves DR; Data P; Nobuyasu RS; Fox MA; Batsanov AS; Palmeira T; Berberan-Santos MN; Bryce MR; Monkman AP Adv Sci (Weinh); 2016 Dec; 3(12):1600080. PubMed ID: 27981000 [TBL] [Abstract][Full Text] [Related]
8. TD-DFT and Experimental Methods for Unraveling the Energy Distribution of Charge-Transfer Triplet/Singlet States of a TADF Molecule in a Frozen Matrix. Woo SJ; Kim JJ J Phys Chem A; 2021 Feb; 125(5):1234-1242. PubMed ID: 33517658 [TBL] [Abstract][Full Text] [Related]
9. Spiral Donor Design Strategy for Blue Thermally Activated Delayed Fluorescence Emitters. Li W; Li M; Li W; Xu Z; Gan L; Liu K; Zheng N; Ning C; Chen D; Wu YC; Su SJ ACS Appl Mater Interfaces; 2021 Feb; 13(4):5302-5311. PubMed ID: 33470809 [TBL] [Abstract][Full Text] [Related]
10. A Novel Strategy toward Thermally Activated Delayed Fluorescence from a Locally Excited State. Chen J; Xiao X; Li S; Duan Y; Wang G; Liao Y; Peng Q; Fu H; Geng H; Shuai Z J Phys Chem Lett; 2022 Mar; 13(11):2653-2660. PubMed ID: 35297633 [TBL] [Abstract][Full Text] [Related]
11. Electronic coupling and spin-orbit charge transfer intersystem crossing (SOCT-ISC) in compact BDP-carbazole dyads with different mutual orientations of the electron donor and acceptor. Hou Y; Kurganskii I; Elmali A; Zhang H; Gao Y; Lv L; Zhao J; Karatay A; Luo L; Fedin M J Chem Phys; 2020 Mar; 152(11):114701. PubMed ID: 32199436 [TBL] [Abstract][Full Text] [Related]
12. Donor-σ-Acceptor Motifs: Thermally Activated Delayed Fluorescence Emitters with Dual Upconversion. Geng Y; D'Aleo A; Inada K; Cui LS; Kim JU; Nakanotani H; Adachi C Angew Chem Int Ed Engl; 2017 Dec; 56(52):16536-16540. PubMed ID: 29105906 [TBL] [Abstract][Full Text] [Related]
14. Vibrationally Assisted Direct Intersystem Crossing between the Same Charge-Transfer States for Thermally Activated Delayed Fluorescence: Analysis by Marcus-Hush Theory Including Reorganization Energy. Serdiuk IE; Mońka M; Kozakiewicz K; Liberek B; Bojarski P; Park SY J Phys Chem B; 2021 Mar; 125(10):2696-2706. PubMed ID: 33661000 [TBL] [Abstract][Full Text] [Related]
15. The Critical Role of nπ* States in the Photophysics and Thermally Activated Delayed Fluorescence of Spiro Acridine-Anthracenone. Franca LG; Long Y; Li C; Danos A; Monkman A J Phys Chem Lett; 2021 Feb; 12(5):1490-1500. PubMed ID: 33533617 [TBL] [Abstract][Full Text] [Related]
16. Long-lived charge separated state and thermally activated delayed fluorescence in anthraquinone-phenoxazine electron donor-acceptor dyads. Zhao X; Zhao J Chem Commun (Camb); 2022 Jul; 58(55):7666-7669. PubMed ID: 35726708 [TBL] [Abstract][Full Text] [Related]
17. Design of Efficient Exciplex Emitters by Decreasing the Energy Gap Between the Local Excited Triplet ( Wei X; Liu Y; Hu T; Li Z; Liu J; Wang R; Gao H; Hu X; Liu G; Wang P; Lee CS; Wang Y Front Chem; 2019; 7():188. PubMed ID: 31024884 [TBL] [Abstract][Full Text] [Related]
18. Donor, Acceptor, and Molecular Charge Transfer Emission All in One Molecule. Franca LG; Danos A; Monkman A J Phys Chem Lett; 2023 Mar; 14(11):2764-2771. PubMed ID: 36897796 [TBL] [Abstract][Full Text] [Related]
19. Photophysics of thermally activated delayed fluorescence molecules. Dias FB; Penfold TJ; Monkman AP Methods Appl Fluoresc; 2017 Mar; 5(1):012001. PubMed ID: 28276340 [TBL] [Abstract][Full Text] [Related]
20. Exploring the possibility of using fluorine-involved non-conjugated electron-withdrawing groups for thermally activated delayed fluorescence emitters by TD-DFT calculation. Chen D; Zysman-Colman E Beilstein J Org Chem; 2021; 17():210-223. PubMed ID: 33564331 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]