BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 36469033)

  • 1. 3D Printed Porous Nanocellulose-Based Scaffolds As Carriers for Immobilization of Glycosyltransferases.
    Lackner F; Liu H; Štiglic AD; Bračič M; Kargl R; Nidetzky B; Mohan T; Kleinschek KS
    ACS Appl Bio Mater; 2022 Dec; 5(12):5728-5740. PubMed ID: 36469033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nano-fibrillated cellulose-based scaffolds for enzyme (co)-immobilization: Application to natural product glycosylation by Leloir glycosyltransferases.
    Liu H; Štiglic AD; Mohan T; Kargl R; Kleinschek KS; Nidetzky B
    Int J Biol Macromol; 2022 Dec; 222(Pt A):217-227. PubMed ID: 36165869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leloir glycosyltransferases enabled to flow synthesis: Continuous production of the natural C-glycoside nothofagin.
    Liu H; Nidetzky B
    Biotechnol Bioeng; 2021 Nov; 118(11):4402-4413. PubMed ID: 34355386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D-Printed Collagen-Nanocellulose Hybrid Bioscaffolds with Tailored Properties for Tissue Engineering Applications.
    Dobaj Štiglic A; Lackner F; Nagaraj C; Beaumont M; Bračič M; Duarte I; Kononenko V; Drobne D; Madhan B; Finšgar M; Kargl R; Stana Kleinschek K; Mohan T
    ACS Appl Bio Mater; 2023 Dec; 6(12):5596-5608. PubMed ID: 38050684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organic acid cross-linked 3D printed cellulose nanocomposite bioscaffolds with controlled porosity, mechanical strength, and biocompatibility.
    Štiglic AD; Gürer F; Lackner F; Bračič D; Winter A; Gradišnik L; Makuc D; Kargl R; Duarte I; Plavec J; Maver U; Beaumont M; Kleinschek KS; Mohan T
    iScience; 2022 May; 25(5):104263. PubMed ID: 35521531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generic Method for Designing Self-Standing and Dual Porous 3D Bioscaffolds from Cellulosic Nanomaterials for Tissue Engineering Applications.
    Mohan T; Dobaj Štiglic A; Beaumont M; Konnerth J; Gürer F; Makuc D; Maver U; Gradišnik L; Plavec J; Kargl R; Stana Kleinschek K
    ACS Appl Bio Mater; 2020 Feb; 3(2):1197-1209. PubMed ID: 35019320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D Printed Porous Cellulose Nanocomposite Hydrogel Scaffolds.
    Sultan S; Mathew AP
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31081812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D printed scaffolds with gradient porosity based on a cellulose nanocrystal hydrogel.
    Sultan S; Mathew AP
    Nanoscale; 2018 Mar; 10(9):4421-4431. PubMed ID: 29451572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D printing algorithm of anisotropic biological scaffold with oxidized nanocellulose and gelatin.
    Xu X; Zhou J; Feng C; Jiang Y; Zhang Q; Shi H
    J Biomater Sci Polym Ed; 2019 Oct; 30(14):1260-1275. PubMed ID: 31164052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-resolution 3D printing of xanthan gum/nanocellulose bio-inks.
    Baniasadi H; Kimiaei E; Polez RT; Ajdary R; Rojas OJ; Österberg M; Seppälä J
    Int J Biol Macromol; 2022 Jun; 209(Pt B):2020-2031. PubMed ID: 35500781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shape fidelity, mechanical and biological performance of 3D printed polycaprolactone-bioactive glass composite scaffolds.
    Baier RV; Contreras Raggio JI; Giovanetti CM; Palza H; Burda I; Terrasi G; Weisse B; De Freitas GS; Nyström G; Vivanco JF; Aiyangar AK
    Biomater Adv; 2022 Mar; 134():112540. PubMed ID: 35525740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D printing process of oxidized nanocellulose and gelatin scaffold.
    Xu X; Zhou J; Jiang Y; Zhang Q; Shi H; Liu D
    J Biomater Sci Polym Ed; 2018 Aug; 29(12):1498-1513. PubMed ID: 29716440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioinspired 3D printable pectin-nanocellulose ink formulations.
    Cernencu AI; Lungu A; Stancu IC; Serafim A; Heggset E; Syverud K; Iovu H
    Carbohydr Polym; 2019 Sep; 220():12-21. PubMed ID: 31196530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering.
    Lee SJ; Lee D; Yoon TR; Kim HK; Jo HH; Park JS; Lee JH; Kim WD; Kwon IK; Park SA
    Acta Biomater; 2016 Aug; 40():182-191. PubMed ID: 26868173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acetylated Nanocellulose for Single-Component Bioinks and Cell Proliferation on 3D-Printed Scaffolds.
    Ajdary R; Huan S; Zanjanizadeh Ezazi N; Xiang W; Grande R; Santos HA; Rojas OJ
    Biomacromolecules; 2019 Jul; 20(7):2770-2778. PubMed ID: 31117356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacterial cellulose nanofibers promote stress and fidelity of 3D-printed silk based hydrogel scaffold with hierarchical pores.
    Huang L; Du X; Fan S; Yang G; Shao H; Li D; Cao C; Zhu Y; Zhu M; Zhang Y
    Carbohydr Polym; 2019 Oct; 221():146-156. PubMed ID: 31227153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of cell deposition by self-absorbent capability of freeze-dried 3D-bioprinted scaffolds derived from cellulose material-alginate hydrogels.
    Li Z; Ramos A; Li MC; Li Z; Bhatta S; Jeyaseelan A; Li Y; Wu Q; Yao S; Xu J
    Biomed Phys Eng Express; 2020 May; 6(4):045009. PubMed ID: 33444270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzyme Scaffolds with Hierarchically Defined Properties via 3D Jet Writing.
    Steier A; Schmieg B; Irtel von Brenndorff Y; Meier M; Nirschl H; Franzreb M; Lahann J
    Macromol Biosci; 2020 Sep; 20(9):e2000154. PubMed ID: 32639110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient enzyme formulation promotes Leloir glycosyltransferases for glycoside synthesis.
    Mikl M; Dennig A; Nidetzky B
    J Biotechnol; 2020 Oct; 322():74-78. PubMed ID: 32687957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sulfated carboxymethyl cellulose and carboxymethyl κ-carrageenan immobilization on 3D-printed poly-ε-caprolactone scaffolds differentially promote pre-osteoblast proliferation and osteogenic activity.
    Abbasi-Ravasjani S; Seddiqi H; Moghaddaszadeh A; Ghiasvand ME; Jin J; Oliaei E; Bacabac RG; Klein-Nulend J
    Front Bioeng Biotechnol; 2022; 10():957263. PubMed ID: 36213076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.