These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 36469272)
1. Phytoaccumulation of cadmium by Pelargonium × hortorum - tolerance and metal recovery. Gul I; Manzoor M; Ahmad I; Kallerhoff J; Arshad M Environ Sci Pollut Res Int; 2023 Mar; 30(12):32673-32682. PubMed ID: 36469272 [TBL] [Abstract][Full Text] [Related]
2. EDTA-assisted phytoextraction of lead and cadmium by Pelargonium cultivars grown on spiked soil. Gul I; Manzoor M; Silvestre J; Rizwan M; Hina K; Kallerhoff J; Arshad M Int J Phytoremediation; 2019; 21(2):101-110. PubMed ID: 30663884 [TBL] [Abstract][Full Text] [Related]
3. Lead availability and phytoextraction in the rhizosphere of Pelargonium species. Manzoor M; Gul I; Manzoor A; Kamboh UR; Hina K; Kallerhoff J; Arshad M Environ Sci Pollut Res Int; 2020 Nov; 27(32):39753-39762. PubMed ID: 32141003 [TBL] [Abstract][Full Text] [Related]
4. Phytoextraction of Pb and Cd by the Mediterranean saltbush (Atriplex halimus L.): metal uptake in relation to salinity. Manousaki E; Kalogerakis N Environ Sci Pollut Res Int; 2009 Nov; 16(7):844-54. PubMed ID: 19597858 [TBL] [Abstract][Full Text] [Related]
5. Lead phytoextraction by Pelargonium hortorum: Comparative assessment of EDTA and DIPA for Pb mobility and toxicity. Arshad M; Naqvi N; Gul I; Yaqoob K; Bilal M; Kallerhoff J Sci Total Environ; 2020 Dec; 748():141496. PubMed ID: 32818897 [TBL] [Abstract][Full Text] [Related]
6. Effective plant-endophyte interplay can improve the cadmium hyperaccumulation in Brachiaria mutica. Ahsan MT; Tahseen R; Ashraf A; Mahmood A; Najam-Ul-Haq M; Arslan M; Afzal M World J Microbiol Biotechnol; 2019 Nov; 35(12):188. PubMed ID: 31741120 [TBL] [Abstract][Full Text] [Related]
7. Response to cadmium and phytostabilization potential of Platycladus orientalis in contaminated soil. Zeng P; Guo Z; Xiao X; Cao X; Peng C Int J Phytoremediation; 2018; 20(13):1337-1345. PubMed ID: 30666894 [TBL] [Abstract][Full Text] [Related]
8. Heavy metal uptake, translocation, and bioaccumulation studies of Triticum aestivum cultivated in contaminated dredged materials. Shumaker KL; Begonia G Int J Environ Res Public Health; 2005 Aug; 2(2):293-8. PubMed ID: 16705830 [TBL] [Abstract][Full Text] [Related]
9. Variability in growth and cadmium accumulation capacity among willow hybrids and their parents: implications for yield-based selection of Cd-efficient cultivars. Wang S; Volk TA; Xu J J Environ Manage; 2021 Dec; 299():113643. PubMed ID: 34526280 [TBL] [Abstract][Full Text] [Related]
10. [Competence of Cd Phytoremediation in Cd-OCDF Co-contaminated Soil Using Mirabilis jalapa L]. Zhang XL; Zou W; Zhou QX Huan Jing Ke Xue; 2015 Aug; 36(8):3045-55. PubMed ID: 26592039 [TBL] [Abstract][Full Text] [Related]
11. The high potential of Pelargonium roseum plant for phytoremediation of heavy metals. Mahdieh M; Yazdani M; Mahdieh S Environ Monit Assess; 2013 Sep; 185(9):7877-81. PubMed ID: 23430071 [TBL] [Abstract][Full Text] [Related]
12. Identification of Sesbania sesban (L.) Merr. as an Efficient and Well Adapted Phytoremediation Tool for Cd Polluted Soils. Varun M; Ogunkunle CO; D'Souza R; Favas P; Paul M Bull Environ Contam Toxicol; 2017 Jun; 98(6):867-873. PubMed ID: 28456824 [TBL] [Abstract][Full Text] [Related]
13. Cadmium Partitioning, Physiological and Oxidative Stress Responses in Marigold (Calendula calypso) Grown on Contaminated Soil: Implications for Phytoremediation. Farooq A; Nadeem M; Abbas G; Shabbir A; Khalid MS; Javeed HMR; Saeed MF; Akram A; Younis A; Akhtar G Bull Environ Contam Toxicol; 2020 Aug; 105(2):270-276. PubMed ID: 32661664 [TBL] [Abstract][Full Text] [Related]
14. Youngia erythrocarpa, a newly discovered cadmium hyperaccumulator plant. Lin L; Ning B; Liao M; Ren Y; Wang Z; Liu Y; Cheng J; Luo L Environ Monit Assess; 2015 Jan; 187(1):4205. PubMed ID: 25504193 [TBL] [Abstract][Full Text] [Related]
15. Phytoremediation potential of hybrid Pennisetum in cadmium-contaminated soil and its physiological responses to cadmium. Wu J; Qian C; Liu Z; Zhong X Environ Sci Pollut Res Int; 2023 Feb; 30(10):26208-26217. PubMed ID: 36355236 [TBL] [Abstract][Full Text] [Related]
16. Seasonal and annual variations of metal uptake, bioaccumulation, and toxicity in Trifolium repens and Lolium perenne growing in a heavy metal-contaminated field. Bidar G; Pruvot C; Garçon G; Verdin A; Shirali P; Douay F Environ Sci Pollut Res Int; 2009 Jan; 16(1):42-53. PubMed ID: 18594892 [TBL] [Abstract][Full Text] [Related]
17. Enhanced phytoremediation of lead by soil applied organic and inorganic amendments: Pb phytoavailability, accumulation and metal recovery. Gul I; Manzoor M; Kallerhoff J; Arshad M Chemosphere; 2020 Nov; 258():127405. PubMed ID: 32947677 [TBL] [Abstract][Full Text] [Related]
18. Effects of arbuscular mycorrhizal symbiosis on growth, nutrient and metal uptake by maize seedlings (Zea mays L.) grown in soils spiked with Lanthanum and Cadmium. Chang Q; Diao FW; Wang QF; Pan L; Dang ZH; Guo W Environ Pollut; 2018 Oct; 241():607-615. PubMed ID: 29886381 [TBL] [Abstract][Full Text] [Related]
19. Effects of mulching tolerant plant straw on soil surface on growth and cadmium accumulation of Galinsoga parviflora. Lin L; Liao M; Ren Y; Luo L; Zhang X; Yang D; He J PLoS One; 2014; 9(12):e114957. PubMed ID: 25490210 [TBL] [Abstract][Full Text] [Related]
20. Plant uptake and leaching potential upon application of amendments in soils spiked with heavy metals (Cd and Pb). Gul I; Manzoor M; Hashmi I; Bhatti MF; Kallerhoff J; Arshad M J Environ Manage; 2019 Nov; 249():109408. PubMed ID: 31513965 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]