These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 36469543)

  • 1. Secuer: Ultrafast, scalable and accurate clustering of single-cell RNA-seq data.
    Wei N; Nie Y; Liu L; Zheng X; Wu HJ
    PLoS Comput Biol; 2022 Dec; 18(12):e1010753. PubMed ID: 36469543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering.
    Wang Y; Yu Z; Li S; Bian C; Liang Y; Wong KC; Li X
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36734596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FlowGrid enables fast clustering of very large single-cell RNA-seq data.
    Fang X; Ho JWK
    Bioinformatics; 2021 Dec; 38(1):282-283. PubMed ID: 34289014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. JLONMFSC: Clustering scRNA-seq data based on joint learning of non-negative matrix factorization and subspace clustering.
    Lan W; Liu M; Chen J; Ye J; Zheng R; Zhu X; Peng W
    Methods; 2024 Feb; 222():1-9. PubMed ID: 38128706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Personalized Low-Rank Subspace Clustering Method Based on Locality and Similarity Constraints for scRNA-seq Data Analysis.
    Qiao TJ; Liu JX; Shang J; Yuan S; Zheng CH; Wang J
    IEEE J Biomed Health Inform; 2023 May; 27(5):2575-2584. PubMed ID: 37027680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep enhanced constraint clustering based on contrastive learning for scRNA-seq data.
    Gan Y; Chen Y; Xu G; Guo W; Zou G
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37313714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-View Clustering With Graph Learning for scRNA-Seq Data.
    Wu W; Zhang W; Hou W; Ma X
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(6):3535-3546. PubMed ID: 37486829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. scNAME: neighborhood contrastive clustering with ancillary mask estimation for scRNA-seq data.
    Wan H; Chen L; Deng M
    Bioinformatics; 2022 Mar; 38(6):1575-1583. PubMed ID: 34999761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. scDCCA: deep contrastive clustering for single-cell RNA-seq data based on auto-encoder network.
    Wang J; Xia J; Wang H; Su Y; Zheng CH
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36631401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clustering scRNA-seq data with the cross-view collaborative information fusion strategy.
    Lou Z; Wei X; Hu Y; Hu S; Wu Y; Tian Z
    Brief Bioinform; 2024 Sep; 25(6):. PubMed ID: 39402696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GNN-based embedding for clustering scRNA-seq data.
    Ciortan M; Defrance M
    Bioinformatics; 2022 Jan; 38(4):1037-1044. PubMed ID: 34850828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. scDSSC: Deep Sparse Subspace Clustering for scRNA-seq Data.
    Wang H; Zhao J; Zheng C; Su Y
    PLoS Comput Biol; 2022 Dec; 18(12):e1010772. PubMed ID: 36534702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. scGAC: a graph attentional architecture for clustering single-cell RNA-seq data.
    Cheng Y; Ma X
    Bioinformatics; 2022 Apr; 38(8):2187-2193. PubMed ID: 35176138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. jSRC: a flexible and accurate joint learning algorithm for clustering of single-cell RNA-sequencing data.
    Wu W; Liu Z; Ma X
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33535230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-supervised deep clustering of single-cell RNA-seq data to hierarchically detect rare cell populations.
    Lei T; Chen R; Zhang S; Chen Y
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37769630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An optimized graph-based structure for single-cell RNA-seq cell-type classification based on non-linear dimension reduction.
    Abadi SAR; Laghaee SP; Koohi S
    BMC Genomics; 2023 May; 24(1):227. PubMed ID: 37127578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A clustering method for small scRNA-seq data based on subspace and weighted distance.
    Ning Z; Dai Z; Zhang H; Chen Y; Yuan Z
    PeerJ; 2023; 11():e14706. PubMed ID: 36710872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep Multi-Constraint Soft Clustering Analysis for Single-Cell RNA-Seq Data via Zero-Inflated Autoencoder Embedding.
    He Y; Chen X; Tu NH; Luo J
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(3):2254-2265. PubMed ID: 37022218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-Cell RNAseq Clustering.
    Beccuti M; Calogero RA
    Methods Mol Biol; 2023; 2584():241-250. PubMed ID: 36495454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. scGCC: Graph Contrastive Clustering With Neighborhood Augmentations for scRNA-Seq Data Analysis.
    Tian SW; Ni JC; Wang YT; Zheng CH; Ji CM
    IEEE J Biomed Health Inform; 2023 Dec; 27(12):6133-6143. PubMed ID: 37751336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.