These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 36470136)
21. Highly efficient utilization of light and charge separation over a hematite photoanode achieved through a noncontact photonic crystal film for photoelectrochemical water splitting. Yu WY; Ma DK; Yang DP; Yang XG; Xu QL; Chen W; Huang S Phys Chem Chem Phys; 2020 Sep; 22(36):20202-20211. PubMed ID: 32966422 [TBL] [Abstract][Full Text] [Related]
22. n-ZrS Tian Z; Wang M; Chen G; Chen J; Da Y; Zhang H; Jiang R; Xiao Y; Cui B; Jiang C; Ding Y; Yang J; Sun Z; Han C; Chen W Angew Chem Int Ed Engl; 2024 Oct; ():e202414209. PubMed ID: 39384542 [TBL] [Abstract][Full Text] [Related]
23. Surface sulfurization activating hematite nanorods for efficient photoelectrochemical water splitting. Mao L; Huang YC; Fu Y; Dong CL; Shen S Sci Bull (Beijing); 2019 Sep; 64(17):1262-1271. PubMed ID: 36659607 [TBL] [Abstract][Full Text] [Related]
24. High-performance n-Si/α-Fe2O3 core/shell nanowire array photoanode towards photoelectrochemical water splitting. Qi X; She G; Huang X; Zhang T; Wang H; Mu L; Shi W Nanoscale; 2014 Mar; 6(6):3182-9. PubMed ID: 24500641 [TBL] [Abstract][Full Text] [Related]
25. Dual modification of BiVO Yang L; Wang R; Zhou N; Liang D; Chu D; Deng C; Yu H; Lv J J Colloid Interface Sci; 2023 Feb; 631(Pt A):35-45. PubMed ID: 36368214 [TBL] [Abstract][Full Text] [Related]
26. Enhanced Charge Separation through ALD-Modified Fe2 O3 /Fe2 TiO5 Nanorod Heterojunction for Photoelectrochemical Water Oxidation. Li C; Wang T; Luo Z; Liu S; Gong J Small; 2016 Jul; 12(25):3415-22. PubMed ID: 27197643 [TBL] [Abstract][Full Text] [Related]
27. Surface engineered doping of hematite nanorod arrays for improved photoelectrochemical water splitting. Shen S; Zhou J; Dong CL; Hu Y; Tseng EN; Guo P; Guo L; Mao SS Sci Rep; 2014 Oct; 4():6627. PubMed ID: 25316219 [TBL] [Abstract][Full Text] [Related]
28. Hematite decorated with nanodot-like cobalt (oxy)hydroxides for boosted photoelectrochemical water oxidation. Chong R; Wang Z; Fan M; Wang L; Chang Z; Zhang L J Colloid Interface Sci; 2023 Jan; 629(Pt B):217-226. PubMed ID: 36152578 [TBL] [Abstract][Full Text] [Related]
29. Photoelectrochemical performance of a nanostructured BiVO Sitaaraman SR; Grace AN; Zhu J; Sellappan R Nanoscale Adv; 2024 Apr; 6(9):2407-2418. PubMed ID: 38694471 [TBL] [Abstract][Full Text] [Related]
30. Coupling multifunctional ZnCoAl-layered double hydroxides on Ti-Fe Cheng H; Ba K; Liu Y; Lin Y; Wang D; Xie T J Colloid Interface Sci; 2025 Feb; 679(Pt A):1117-1126. PubMed ID: 39418897 [TBL] [Abstract][Full Text] [Related]
32. Nanoporous Cubic Silicon Carbide Photoanodes for Enhanced Solar Water Splitting. Jian JX; Jokubavicius V; Syväjärvi M; Yakimova R; Sun J ACS Nano; 2021 Mar; 15(3):5502-5512. PubMed ID: 33605135 [TBL] [Abstract][Full Text] [Related]
33. Enhanced photoelectrochemical water oxidation performance of a hematite photoanode by decorating with Au-Pt core-shell nanoparticles. Chen B; Fan W; Mao B; Shen H; Shi W Dalton Trans; 2017 Nov; 46(46):16050-16057. PubMed ID: 29119164 [TBL] [Abstract][Full Text] [Related]
34. Efficient Photoelectrochemical Water Oxidation on Hematite with Fluorine-Doped FeOOH and FeNiOOH as Dual Cocatalysts. Deng J; Zhang Q; Feng K; Lan H; Zhong J; Chaker M; Ma D ChemSusChem; 2018 Nov; 11(21):3783-3789. PubMed ID: 30215886 [TBL] [Abstract][Full Text] [Related]
35. Investigating the Role of Substrate Tin Diffusion on Hematite Based Photoelectrochemical Water Splitting System. Natarajan K; Bhatt P; Yadav P; Pandey K; Tripathi B; Kumar M J Nanosci Nanotechnol; 2018 Mar; 18(3):1856-1863. PubMed ID: 29448672 [TBL] [Abstract][Full Text] [Related]
36. Grey hematite photoanodes decrease the onset potential in photoelectrochemical water oxidation. Liu PF; Wang C; Wang Y; Li Y; Zhang B; Zheng LR; Jiang Z; Zhao H; Yang HG Sci Bull (Beijing); 2021 May; 66(10):1013-1021. PubMed ID: 36654246 [TBL] [Abstract][Full Text] [Related]
37. Unveiling the influence of 5,10,15,20-tetrakis (4-carboxyl phenyl) porphyrin on the photogenerated charge behavior and photoelectrochemical water oxidation of hematite photoanode. Bu Q; Liu X; Zhao Q; Lu G; Zhu X; Liu Q; Xie T J Colloid Interface Sci; 2022 Nov; 626():345-354. PubMed ID: 35792465 [TBL] [Abstract][Full Text] [Related]
38. Fabrication of Flower-Shaped Sb Li Z; Jiang N; Wang K; Huang D; Ye Z; Jiang J; Zhu L Langmuir; 2024 Jun; 40(23):12097-12106. PubMed ID: 38814133 [TBL] [Abstract][Full Text] [Related]
39. Engineered Sn- and Mg-doped hematite photoanodes for efficient photoelectrochemical water oxidation. Cai J; Chen H; Liu C; Yin S; Li H; Xu L; Liu H; Xie Q Dalton Trans; 2020 Aug; 49(32):11282-11289. PubMed ID: 32760974 [TBL] [Abstract][Full Text] [Related]
40. ZnSe and CdS Co-Sensitized TiO Gunasekaran A; Sadhasivam S; Anbarasan N; Jeganathan K Chempluschem; 2022 Nov; 87(11):e202200304. PubMed ID: 36414394 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]