These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 36470477)
1. Machine Learning Identifies a Rat Model of Parkinson's Disease via Sleep-Wake Electroencephalogram. Lu J; Sorooshyari SK Neuroscience; 2023 Feb; 510():1-8. PubMed ID: 36470477 [TBL] [Abstract][Full Text] [Related]
2. [Selective stimulations and lesions of the rat brain nuclei as the models for research of the human sleep pathology mechanisms]. Šaponjić J Glas Srp Akad Nauka Med; 2011; (51):85-97. PubMed ID: 22165729 [TBL] [Abstract][Full Text] [Related]
3. Electrocortical high frequency activity and respiratory entrainment in 6-hydroxydopamine model of Parkinson's disease. Cavelli M; Prunell G; Costa G; Velásquez N; Gonzalez J; Castro-Zaballa S; Lima MMS; Torterolo P Brain Res; 2019 Dec; 1724():146439. PubMed ID: 31499018 [TBL] [Abstract][Full Text] [Related]
5. Design and validation of a computer-based sleep-scoring algorithm. Louis RP; Lee J; Stephenson R J Neurosci Methods; 2004 Feb; 133(1-2):71-80. PubMed ID: 14757347 [TBL] [Abstract][Full Text] [Related]
6. The nucleus of solitary tract (NTS) synchronizes sleep-wake-state-dependent cortical activity through the parabrachial nucleus (PB) in rat. Zhai F; Lv Y; Shi F; Li S; Guo Z; Yang Y; Chen J; Lu J Sleep Med; 2024 Oct; 122():45-50. PubMed ID: 39121823 [TBL] [Abstract][Full Text] [Related]
7. Behavioral sleep-wake homeostasis and EEG delta power are decoupled by chronic sleep restriction in the rat. Stephenson R; Caron AM; Famina S Sleep; 2015 May; 38(5):685-97. PubMed ID: 25669184 [TBL] [Abstract][Full Text] [Related]
8. Lesion of the pedunculopontine tegmental nucleus in rat augments cortical activation and disturbs sleep/wake state transitions structure. Petrovic J; Ciric J; Lazic K; Kalauzi A; Saponjic J Exp Neurol; 2013 Sep; 247():562-71. PubMed ID: 23481548 [TBL] [Abstract][Full Text] [Related]
9. [Neurochemical mechanisms of sleep regulation]. Glas Srp Akad Nauka Med; 2009; (50):97-109. PubMed ID: 20666118 [TBL] [Abstract][Full Text] [Related]
10. Topography of the sleep/wake states related EEG microstructure and transitions structure differentiates the functionally distinct cholinergic innervation disorders in rat. Petrovic J; Lazic K; Ciric J; Kalauzi A; Saponjic J Behav Brain Res; 2013 Nov; 256():108-18. PubMed ID: 23933142 [TBL] [Abstract][Full Text] [Related]
11. A novel machine learning system for identifying sleep-wake states in mice. Fraigne JJ; Wang J; Lee H; Luke R; Pintwala SK; Peever JH Sleep; 2023 Jun; 46(6):. PubMed ID: 37021715 [TBL] [Abstract][Full Text] [Related]
12. Effect of Electrical Stimulation of the Nucleus of the Solitary Tract on Electroencephalographic Spectral Power and the Sleep-Wake Cycle in Freely Moving Cats. Martínez-Vargas D; Valdés-Cruz A; Magdaleno-Madrigal VM; Fernández-Mas R; Almazán-Alvarado S Brain Stimul; 2017; 10(1):116-125. PubMed ID: 27651236 [TBL] [Abstract][Full Text] [Related]
13. Sleep/Wake Physiology and Quantitative Electroencephalogram Analysis of the Neuroligin-3 Knockout Rat Model of Autism Spectrum Disorder. Thomas AM; Schwartz MD; Saxe MD; Kilduff TS Sleep; 2017 Oct; 40(10):. PubMed ID: 28958035 [TBL] [Abstract][Full Text] [Related]
14. Wake and non-rapid eye movement sleep dysfunction is associated with colonic neuropathology in Parkinson's disease. Sadoc M; Clairembault T; Coron E; Berthomier C; Le Dily S; Vavasseur F; Pavageau A; St Louis EK; Péréon Y; Neunlist M; Derkinderen P; Leclair-Visonneau L Sleep; 2024 Mar; 47(3):. PubMed ID: 38156524 [TBL] [Abstract][Full Text] [Related]
15. Basal ganglia control of sleep-wake behavior and cortical activation. Qiu MH; Vetrivelan R; Fuller PM; Lu J Eur J Neurosci; 2010 Feb; 31(3):499-507. PubMed ID: 20105243 [TBL] [Abstract][Full Text] [Related]
17. Circadian rhythms and sleep have additive effects on respiration in the rat. Stephenson R; Liao KS; Hamrahi H; Horner RL J Physiol; 2001 Oct; 536(Pt 1):225-35. PubMed ID: 11579171 [TBL] [Abstract][Full Text] [Related]
18. Altered EEG power spectrum, but not sleep-wake architecture, in HCN1 knockout mice. Bleakley LE; Keenan RJ; Graven RD; Metha JA; Ma S; Daykin H; Cornthwaite-Duncan L; Hoyer D; Reid CA; Jacobson LH Behav Brain Res; 2023 Feb; 437():114105. PubMed ID: 36089097 [TBL] [Abstract][Full Text] [Related]
19. Human Rapid Eye Movement Sleep Shows Local Increases in Low-Frequency Oscillations and Global Decreases in High-Frequency Oscillations Compared to Resting Wakefulness. Baird B; Castelnovo A; Riedner BA; Lutz A; Ferrarelli F; Boly M; Davidson RJ; Tononi G eNeuro; 2018; 5(4):. PubMed ID: 30225358 [TBL] [Abstract][Full Text] [Related]
20. Spectral power time-courses of human sleep EEG reveal a striking discontinuity at approximately 18 Hz marking the division between NREM-specific and wake/REM-specific fast frequency activity. Merica H; Fortune RD Cereb Cortex; 2005 Jul; 15(7):877-84. PubMed ID: 15459085 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]