These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 36470479)

  • 1. Activity-dependent Organization of Topographic Neural Circuits.
    Cline HT; Lau M; Hiramoto M
    Neuroscience; 2023 Jan; 508():3-18. PubMed ID: 36470479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optic flow instructs retinotopic map formation through a spatial to temporal to spatial transformation of visual information.
    Hiramoto M; Cline HT
    Proc Natl Acad Sci U S A; 2014 Nov; 111(47):E5105-13. PubMed ID: 25385606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of auditory experience in the formation of neural circuits underlying vocal learning in zebra finches.
    Iyengar S; Bottjer SW
    J Neurosci; 2002 Feb; 22(3):946-58. PubMed ID: 11826123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Topographic connectivity reveals task-dependent retinotopic processing throughout the human brain.
    Knapen T
    Proc Natl Acad Sci U S A; 2021 Jan; 118(2):. PubMed ID: 33372144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diversity of Ocular Dominance Patterns in Visual Cortex Originates from Variations in Local Cortical Retinotopy.
    Najafian S; Jin J; Alonso JM
    J Neurosci; 2019 Nov; 39(46):9145-9163. PubMed ID: 31558616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A topographic instructive signal guides the adjustment of the auditory space map in the optic tectum.
    Hyde PS; Knudsen EI
    J Neurosci; 2001 Nov; 21(21):8586-93. PubMed ID: 11606646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning through maps: functional significance of topographic organization in primary sensory cortex.
    Diamond ME; Petersen RS; Harris JA
    J Neurobiol; 1999 Oct; 41(1):64-8. PubMed ID: 10504193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developmental mechanisms of topographic map formation and alignment.
    Cang J; Feldheim DA
    Annu Rev Neurosci; 2013 Jul; 36():51-77. PubMed ID: 23642132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visual Experience Is Required for the Development of Eye Movement Maps in the Mouse Superior Colliculus.
    Wang L; Liu M; Segraves MA; Cang J
    J Neurosci; 2015 Sep; 35(35):12281-6. PubMed ID: 26338338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Creating abstract topographic representations: implications for coding, learning and reasoning.
    Tinsley CJ
    Biosystems; 2009 Jun; 96(3):251-8. PubMed ID: 19758551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Topographic maps are fundamental to sensory processing.
    Kaas JH
    Brain Res Bull; 1997; 44(2):107-12. PubMed ID: 9292198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Guide for the Multiplexed: The Development of Visual Feature Maps in the Brain.
    Li VJ; Chorghay Z; Ruthazer ES
    Neuroscience; 2023 Jan; 508():62-75. PubMed ID: 35952996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perceptual learning directs auditory cortical map reorganization through top-down influences.
    Polley DB; Steinberg EE; Merzenich MM
    J Neurosci; 2006 May; 26(18):4970-82. PubMed ID: 16672673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brainstem control of orienting movements: intrinsic coordinate systems and underlying circuitry.
    Masino T
    Brain Behav Evol; 1992; 40(2-3):98-111. PubMed ID: 1422810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensory experience modifies feature map relationships in visual cortex.
    Cloherty SL; Hughes NJ; Hietanen MA; Bhagavatula PS; Goodhill GJ; Ibbotson MR
    Elife; 2016 Jun; 5():. PubMed ID: 27310531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Topographic maps and neural tuning for sensory substitution dimensions learned in adulthood in a congenital blind subject.
    Hofstetter S; Zuiderbaan W; Heimler B; Dumoulin SO; Amedi A
    Neuroimage; 2021 Jul; 235():118029. PubMed ID: 33836269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of visual experience in the formation of binocular projections in frogs.
    Udin SB
    Cell Mol Neurobiol; 1985 Jun; 5(1-2):85-102. PubMed ID: 3896495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural pattern formation via a competitive Hebbian mechanism.
    Obermayer K; Sejnowski T; Blasdel GG
    Behav Brain Res; 1995 Jan; 66(1-2):161-7. PubMed ID: 7755886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A model for learning topographically organized parts-based representations of objects in visual cortex: topographic nonnegative matrix factorization.
    Hosoda K; Watanabe M; Wersing H; Körner E; Tsujino H; Tamura H; Fujita I
    Neural Comput; 2009 Sep; 21(9):2605-33. PubMed ID: 19548799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of topography within song control circuitry of zebra finches during the sensitive period for song learning.
    Iyengar S; Viswanathan SS; Bottjer SW
    J Neurosci; 1999 Jul; 19(14):6037-57. PubMed ID: 10407041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.