These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 36470593)
1. Alternating Flow Field Design Improves the Performance of Proton Exchange Membrane Fuel Cells. Qin Z; Huo W; Bao Z; Tongsh C; Wang B; Du Q; Jiao K Adv Sci (Weinh); 2023 Feb; 10(4):e2205305. PubMed ID: 36470593 [TBL] [Abstract][Full Text] [Related]
2. Structure Design for Ultrahigh Power Density Proton Exchange Membrane Fuel Cell. Zhang G; Wu L; Tongsh C; Qu Z; Wu S; Xie B; Huo W; Du Q; Wang H; An L; Wang N; Xuan J; Chen W; Xi F; Wang Z; Jiao K Small Methods; 2023 Mar; 7(3):e2201537. PubMed ID: 36609816 [TBL] [Abstract][Full Text] [Related]
3. Performance Studies of Proton Exchange Membrane Fuel Cells with Different Flow Field Designs - Review. Marappan M; Palaniswamy K; Velumani T; Chul KB; Velayutham R; Shivakumar P; Sundaram S Chem Rec; 2021 Apr; 21(4):663-714. PubMed ID: 33543591 [TBL] [Abstract][Full Text] [Related]
4. Experimental Investigation on the Anode Flow Field Design for an Air-Cooled Open-Cathode Proton Exchange Membrane Fuel Cell. Deng Z; Li B; Xing S; Zhao C; Wang H Membranes (Basel); 2022 Oct; 12(11):. PubMed ID: 36363624 [TBL] [Abstract][Full Text] [Related]
5. Numerical Study on the Effect of an Improved Three-Partition Baffle Flow Field on Proton Exchange Membrane Fuel Cell Performance. Deng X; Zhang E; Lei J; Jia D; Liu Y; Shuchao HE ACS Omega; 2022 Nov; 7(47):42872-42882. PubMed ID: 36467955 [TBL] [Abstract][Full Text] [Related]
6. Optimization of Flow Channels in a PEM Fuel Cell Based on a Multiobjective Evaluation. Jiang D; Wang F; Li X; Tan J; Wang C ACS Omega; 2024 Jan; 9(1):1683-1694. PubMed ID: 38222584 [TBL] [Abstract][Full Text] [Related]
7. Scaling Up Studies on PEMFC Using a Modified Serpentine Flow Field Incorporating Porous Sponge Inserts to Observe Water Molecules. Marappan M; Narayanan R; Manoharan K; Vijayakrishnan MK; Palaniswamy K; Karazhanov S; Sundaram S Molecules; 2021 Jan; 26(2):. PubMed ID: 33430043 [TBL] [Abstract][Full Text] [Related]
8. Effects of the Design and Optimization of Trapezoidal Channels and Baffles (Number and Position) on the Net Power Density of Proton-Exchange Membrane Fuel Cells. Xu C; Wang H; Li Z; Cheng T ACS Omega; 2022 Feb; 7(5):4214-4223. PubMed ID: 35155914 [TBL] [Abstract][Full Text] [Related]
9. Investigating the Effect of the Compensation Flow Fields on the Performance and Thermal Stress Distribution of a Typical Fuel Cell. Zhao Y; Hu C; Xu C; Cho HM; Chen D ACS Omega; 2024 Apr; 9(15):17458-17466. PubMed ID: 38645310 [TBL] [Abstract][Full Text] [Related]
10. Performance of the multi-U-style structure based flow field for polymer electrolyte membrane fuel cell. Qi W; Chen X; Zhang ZG; Ge S; Wang H; Deng R; Liu Z; Tuo J; Guo S; Cheng J Sci Rep; 2024 Oct; 14(1):23318. PubMed ID: 39375479 [TBL] [Abstract][Full Text] [Related]
11. Snowflake Bionic Flow Channel Design to Optimize the Pressure Drop and Flow Uniform of Proton Exchange Membrane Fuel Cells. Li Y; Bi J; Tang M; Lu G Micromachines (Basel); 2022 Apr; 13(5):. PubMed ID: 35630132 [TBL] [Abstract][Full Text] [Related]
12. Performance evaluation and economic analysis of integrated solid oxide electrolyzer cell and proton exchange membrane fuel cell for power generation. Abdollahipour A; Sayyaadi H Heliyon; 2024 Jul; 10(14):e34631. PubMed ID: 39113979 [TBL] [Abstract][Full Text] [Related]
13. Porous Flow Field for Next-Generation Proton Exchange Membrane Fuel Cells: Materials, Characterization, Design, and Challenges. Zhang G; Qu Z; Tao WQ; Wang X; Wu L; Wu S; Xie X; Tongsh C; Huo W; Bao Z; Jiao K; Wang Y Chem Rev; 2023 Feb; 123(3):989-1039. PubMed ID: 36580359 [TBL] [Abstract][Full Text] [Related]
14. Exergetic Performance Coefficient Analysis and Optimization of a High-Temperature Proton Exchange Membrane Fuel Cell. Li D; Li Y; Ma Z; Zheng M; Lu Z Membranes (Basel); 2022 Jan; 12(1):. PubMed ID: 35054596 [TBL] [Abstract][Full Text] [Related]
15. Effect of Gas Diffusion Layer Notch Arrangement and Gradient Depth on the Performance of Proton Exchange Membrane Fuel Cells in the Serpentine Flow Field. Zhang H; Zhang L; Zhang Y; Hou Z; Liu J ACS Omega; 2023 Mar; 8(11):10191-10201. PubMed ID: 36969400 [TBL] [Abstract][Full Text] [Related]
16. Design and Simulation of Air-Breathing Micro Direct Methanol Fuel Cells with Different Anode Flow Fields. Deng H; Zhou J; Zhang Y Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33801312 [TBL] [Abstract][Full Text] [Related]
17. Performance Analysis and Optimization of a High-Temperature PEMFC Vehicle Based on Particle Swarm Optimization Algorithm. Li Y; Ma Z; Zheng M; Li D; Lu Z; Xu B Membranes (Basel); 2021 Sep; 11(9):. PubMed ID: 34564508 [TBL] [Abstract][Full Text] [Related]
18. Energy, Exergetic, and Thermoeconomic Analyses of Hydrogen-Fueled 1-kW Proton-Exchange Membrane Fuel Cell. Yoo Y; Lee SY; Seo SH; Oh SD; Kwak HY Entropy (Basel); 2024 Jun; 26(7):. PubMed ID: 39056929 [TBL] [Abstract][Full Text] [Related]
19. Design and performance optimization of a lattice-based radial flow field in proton exchange membrane fuel cells. Zheng M; Liang H; Bu W; Luo X; Hu X; Zhang Z RSC Adv; 2024 Oct; 14(44):32542-32553. PubMed ID: 39411262 [TBL] [Abstract][Full Text] [Related]
20. Dataset and measurements from a current density sensor during experimental testing of dynamic load cycling for a parallel-serpentine design of a proton exchange membrane fuel cell. Toharias B; Suárez C; Iranzo A; Salva M; Rosa F Data Brief; 2024 Jun; 54():110392. PubMed ID: 38632982 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]