These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 36470596)

  • 1. Mosaic Nanocrystalline Graphene Skin Empowers Highly Reversible Zn Metal Anodes.
    Yang X; Lv J; Cheng C; Shi Z; Peng J; Chen Z; Lian X; Li W; Zou Y; Zhao Y; Rümmeli MH; Dou S; Sun J
    Adv Sci (Weinh); 2023 Feb; 10(4):e2206077. PubMed ID: 36470596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synchronous Dual Electrolyte Additive Sustains Zn Metal Anode with 5600 h Lifespan.
    Yang X; Li W; Chen Z; Tian M; Peng J; Luo J; Su Y; Zou Y; Weng G; Shao Y; Dou S; Sun J
    Angew Chem Int Ed Engl; 2023 Mar; 62(10):e202218454. PubMed ID: 36624050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zincophilic Interfacial Manipulation against Dendrite Growth and Side Reactions for Stable Zn Metal Anodes.
    Zeng Y; Pei Z; Guo Y; Luan D; Gu X; Lou XWD
    Angew Chem Int Ed Engl; 2023 Nov; 62(45):e202312145. PubMed ID: 37728430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Achieving stable Zn metal anode via a hydrophobic and Zn
    Li L; Zhang Y; Du C; Zhou X; Xiong H; Wang G; Lu X
    J Colloid Interface Sci; 2024 Mar; 657():644-652. PubMed ID: 38071813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interfacial Manipulation via In Situ Grown ZnSe Cultivator toward Highly Reversible Zn Metal Anodes.
    Yang X; Li C; Sun Z; Yang S; Shi Z; Huang R; Liu B; Li S; Wu Y; Wang M; Su Y; Dou S; Sun J
    Adv Mater; 2021 Dec; 33(52):e2105951. PubMed ID: 34617348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constructing Highly Stable Zinc Metal Anodes via Induced Zn(002) Growth.
    Hu S; Tao H; Ma H; Yan B; Li Y; Zhang L; Yang X
    ACS Appl Mater Interfaces; 2024 Apr; 16(15):18949-18958. PubMed ID: 38569078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interfacial Reconstruction for Regulating Zn
    Yang C; Zhang X; Cao J; Zhang D; Kidkhunthod P; Wannapaiboon S; Qin J
    ACS Appl Mater Interfaces; 2023 Jun; 15(22):26718-26727. PubMed ID: 37218675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D hierarchical graphene matrices enable stable Zn anodes for aqueous Zn batteries.
    Mu Y; Li Z; Wu BK; Huang H; Wu F; Chu Y; Zou L; Yang M; He J; Ye L; Han M; Zhao T; Zeng L
    Nat Commun; 2023 Jul; 14(1):4205. PubMed ID: 37452017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic-Assisted 3D Printing Zinc Powder Anode with 2D Conductive MOF/MXene Heterostructures for High-Stable Zinc-Organic Battery.
    Lu H; Hu J; Zhang K; Zhao J; Deng S; Li Y; Xu B; Pang H
    Adv Mater; 2024 Feb; 36(6):e2309753. PubMed ID: 37939787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Cu-Ag double-layer coating strategy for stable and reversible Zn metal anodes.
    Liu J; Luo Q; Xia S; Yang X; Lei J; Sun Q; Chen X; Shao J; Tang X; Zhou G
    J Colloid Interface Sci; 2024 Jul; 665():163-171. PubMed ID: 38520933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface Protection and Interface Regulation for Zn Anode via 1-Hydroxy Ethylidene-1,1-Diphosphonic Acid Electrolyte Additive toward High-Performance Aqueous Batteries.
    Li M; Xie K; Peng R; Yuan B; Wang Q; Wang C
    Small; 2022 Apr; 18(13):e2107398. PubMed ID: 35083869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Protective Layer of UIO-66/Reduced Graphene Oxide to Stabilize Zinc-Metal Anodes toward High-Performance Aqueous Zinc-Ion Batteries.
    Wu Y; Fan Q; Liu L; Chen X; Huang S; Xu J
    ACS Appl Mater Interfaces; 2024 Jul; 16(26):34020-34029. PubMed ID: 38961571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrolyte Design for In Situ Construction of Highly Zn
    Zeng X; Mao J; Hao J; Liu J; Liu S; Wang Z; Wang Y; Zhang S; Zheng T; Liu J; Rao P; Guo Z
    Adv Mater; 2021 Mar; 33(11):e2007416. PubMed ID: 33576130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-Situ Integration of a Hydrophobic and Fast-Zn
    Liu M; Yuan W; Ma G; Qiu K; Nie X; Liu Y; Shen S; Zhang N
    Angew Chem Int Ed Engl; 2023 Jul; 62(27):e202304444. PubMed ID: 37129439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Establishing Pinhole Deposition Mode of Zn via Scalable Monolayer Graphene Film.
    Zou Y; Wu Y; Wei W; Qiao C; Lu M; Su Y; Guo W; Yang X; Song Y; Tian M; Dou S; Liu Z; Sun J
    Adv Mater; 2024 May; 36(19):e2313775. PubMed ID: 38324253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A "Zn
    Bai M; Chen J; Li Q; Wang X; Li J; Lin X; Shao S; Li D; Wang Z
    Small; 2024 Jun; ():e2403380. PubMed ID: 38837583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. N-Doped Ti
    Zhang Z; Wang Y; Sun J; Dang L; Li Q; He X; Liu Z; Lei Z
    Small; 2024 Jul; ():e2402636. PubMed ID: 39082412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transforming Undesired Corrosion Products into a Nanoflake-Array Functional Layer: A Gelatin-Assistant Modification Strategy for High Performance Zn Battery Anodes.
    Wu B; Liu J; Rao S; Zheng C; Song W; Ma Q; Niu J; Wang F
    Small; 2024 Aug; 20(31):e2400926. PubMed ID: 38470206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitroxyl radical triggered the construction of a molecular protective layer for achieving durable Zn metal anodes.
    Ma X; Yu H; Yan C; Chen Q; Wang Z; Chen Y; Chen G; Lv C
    J Colloid Interface Sci; 2024 Jun; 664():539-548. PubMed ID: 38484522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Situ Constructing Coordination Compounds Interphase to Stabilize Zn Metal Anode for High-Performance Aqueous Zn-SeS
    Li J; He B; Zhang Y; Cheng Z; Yuan L; Huang Y; Li Z
    Small; 2022 May; 18(18):e2200567. PubMed ID: 35355398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.