These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 36470857)
1. Precise atom manipulation through deep reinforcement learning. Chen IJ; Aapro M; Kipnis A; Ilin A; Liljeroth P; Foster AS Nat Commun; 2022 Dec; 13(1):7499. PubMed ID: 36470857 [TBL] [Abstract][Full Text] [Related]
2. An Autonomous Path Planning Model for Unmanned Ships Based on Deep Reinforcement Learning. Guo S; Zhang X; Zheng Y; Du AY Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31940855 [TBL] [Abstract][Full Text] [Related]
3. Deep reinforcement learning and its applications in medical imaging and radiation therapy: a survey. Xu L; Zhu S; Wen N Phys Med Biol; 2022 Nov; 67(22):. PubMed ID: 36270582 [TBL] [Abstract][Full Text] [Related]
5. Building Structures Atom by Atom via Electron Beam Manipulation. Dyck O; Kim S; Jimenez-Izal E; Alexandrova AN; Kalinin SV; Jesse S Small; 2018 Sep; 14(38):e1801771. PubMed ID: 30146718 [TBL] [Abstract][Full Text] [Related]
6. Chemical Synthesis at Surfaces with Atomic Precision: Taming Complexity and Perfection. Wang C; Chi L; Ciesielski A; Samorì P Angew Chem Int Ed Engl; 2019 Dec; 58(52):18758-18775. PubMed ID: 31407848 [TBL] [Abstract][Full Text] [Related]
7. Applying Reinforcement Learning for Enhanced Cybersecurity against Adversarial Simulation. Oh SH; Jeong MK; Kim HC; Park J Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991711 [TBL] [Abstract][Full Text] [Related]
8. Learning Mobile Manipulation through Deep Reinforcement Learning. Wang C; Zhang Q; Tian Q; Li S; Wang X; Lane D; Petillot Y; Wang S Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32050678 [TBL] [Abstract][Full Text] [Related]
9. Autonomous robotic additive manufacturing through distributed model-free deep reinforcement learning in computational design environments. Felbrich B; Schork T; Menges A Constr Robot; 2022; 6(1):15-37. PubMed ID: 37520105 [TBL] [Abstract][Full Text] [Related]
10. Role of tip chemical reactivity on atom manipulation process in dynamic force microscopy. Sugimoto Y; Yurtsever A; Abe M; Morita S; Ondráček M; Pou P; Pérez R; Jelínek P ACS Nano; 2013 Aug; 7(8):7370-6. PubMed ID: 23906095 [TBL] [Abstract][Full Text] [Related]
11. Active nanocharacterization of nanofunctional materials by scanning tunneling microscopy. Fujita D; Sagisaka K Sci Technol Adv Mater; 2008 Jan; 9(1):013003. PubMed ID: 27877921 [TBL] [Abstract][Full Text] [Related]
12. Deep Reinforcement Learning Controller for 3D Path Following and Collision Avoidance by Autonomous Underwater Vehicles. Havenstrøm ST; Rasheed A; San O Front Robot AI; 2020; 7():566037. PubMed ID: 33585570 [TBL] [Abstract][Full Text] [Related]
13. Exploring electron beam induced atomic assembly via reinforcement learning in a molecular dynamics environment Vasudevan RK; Ghosh A; Ziatdinov M; Kalinin SV Nanotechnology; 2021 Dec; 33(11):. PubMed ID: 34768249 [TBL] [Abstract][Full Text] [Related]
14. Deep Reinforcement Learning: A Survey. Wang X; Wang S; Liang X; Zhao D; Huang J; Xu X; Dai B; Miao Q IEEE Trans Neural Netw Learn Syst; 2024 Apr; 35(4):5064-5078. PubMed ID: 36170386 [TBL] [Abstract][Full Text] [Related]
15. Interplay between Switching Driven by the Tunneling Current and Atomic Force of a Bistable Four-Atom Si Quantum Dot. Yamazaki S; Maeda K; Sugimoto Y; Abe M; Zobač V; Pou P; Rodrigo L; Mutombo P; Pérez R; Jelínek P; Morita S Nano Lett; 2015 Jul; 15(7):4356-63. PubMed ID: 26027677 [TBL] [Abstract][Full Text] [Related]