BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 36471527)

  • 21. Gabapentin suppresses spasticity in the spinal cord-injured rat.
    Kitzman PH; Uhl TL; Dwyer MK
    Neuroscience; 2007 Nov; 149(4):813-21. PubMed ID: 17964732
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Effect of lentivirus-mediated small interfering RNA on mitogen- and stress-activated protein kinase 1 in spinal cord injury of rats].
    Zhong Z; Zhou Y; Feng S; Huang Y; Chen X
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Jul; 32(7):941-950. PubMed ID: 30129321
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Changes in vesicular glutamate transporter 2, vesicular GABA transporter and vesicular acetylcholine transporter labeling of sacrocaudal motoneurons in the spastic rat.
    Kitzman P
    Exp Neurol; 2006 Feb; 197(2):407-19. PubMed ID: 16300756
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of spinal cord transection on N-methyl-D-aspartate receptors in the cord.
    Krenz NR; Weaver LC
    J Neurotrauma; 1998 Dec; 15(12):1027-36. PubMed ID: 9872459
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhancing KCC2 activity decreases hyperreflexia and spasticity after chronic spinal cord injury.
    Bilchak JN; Yeakle K; Caron G; Malloy D; Côté MP
    Exp Neurol; 2021 Apr; 338():113605. PubMed ID: 33453210
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The swimming test is effective for evaluating spasticity after contusive spinal cord injury.
    Ryu Y; Ogata T; Nagao M; Kitamura T; Morioka K; Ichihara Y; Doi T; Sawada Y; Akai M; Nishimura R; Fujita N
    PLoS One; 2017; 12(2):e0171937. PubMed ID: 28182676
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Alterations of serotonin 2C and 2A receptors in response to T10 spinal cord transection in rats.
    Navarrett S; Collier L; Cardozo C; Dracheva S
    Neurosci Lett; 2012 Jan; 506(1):74-8. PubMed ID: 22056918
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Upregulation of calcium channel alpha-2-delta-1 subunit in dorsal horn contributes to spinal cord injury-induced tactile allodynia.
    Kusuyama K; Tachibana T; Yamanaka H; Okubo M; Yoshiya S; Noguchi K
    Spine J; 2018 Jun; 18(6):1062-1069. PubMed ID: 29355786
    [TBL] [Abstract][Full Text] [Related]  

  • 29. BDNF Induced by Treadmill Training Contributes to the Suppression of Spasticity and Allodynia After Spinal Cord Injury via Upregulation of KCC2.
    Tashiro S; Shinozaki M; Mukaino M; Renault-Mihara F; Toyama Y; Liu M; Nakamura M; Okano H
    Neurorehabil Neural Repair; 2015 Aug; 29(7):677-89. PubMed ID: 25527489
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular Identification of Pro-Excitogenic Receptor and Channel Phenotypes of the Deafferented Lumbar Motoneurons in the Early Phase after SCT in Rats.
    Ji B; Wojtaś B; Skup M
    Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232433
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Co-localization of substance P and dopamine beta-hydroxylase with growth-associated protein-43 is lost caudal to a spinal cord transection.
    Cassam AK; Rogers KA; Weaver LC
    Neuroscience; 1999; 88(4):1275-88. PubMed ID: 10336136
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Alterations of Dopamine-Related Transcripts in A11 Diencephalospinal Pathways after Spinal Cord Injury.
    Zhao S; DeFinis JH; Hou S
    Neural Plast; 2021; 2021():8838932. PubMed ID: 33510781
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spatiotemporal patterns of SSeCKS expression after rat spinal cord injury.
    Xiao F; Fei M; Cheng C; Ji Y; Sun L; Qin J; Yang J; Liu Y; Zhang L; Xia Y; Shen A
    Neurochem Res; 2008 Sep; 33(9):1735-48. PubMed ID: 18307037
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modified PRISM and SCI-SET Spasticity Measures for Persons With Traumatic Spinal Cord Injury: Results of a Rasch Analyses.
    Sweatman WM; Heinemann AW; Furbish CL; Field-Fote EC
    Arch Phys Med Rehabil; 2020 Sep; 101(9):1570-1579. PubMed ID: 32497601
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effectiveness of riluzole in suppressing spasticity in the spinal cord injured rat.
    Kitzman PH
    Neurosci Lett; 2009 May; 455(2):150-3. PubMed ID: 19368865
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of intermittent theta burst stimulation on spasticity after spinal cord injury.
    Nardone R; Langthaler PB; Orioli A; Höller P; Höller Y; Frey VN; Brigo F; Trinka E
    Restor Neurol Neurosci; 2017; 35(3):287-294. PubMed ID: 28598858
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-frequency transcutaneous electrical nerve stimulation alleviates spasticity after spinal contusion by inhibiting activated microglia in rats.
    Hahm SC; Yoon YW; Kim J
    Neurorehabil Neural Repair; 2015 May; 29(4):370-81. PubMed ID: 25122586
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Impact of specific symptoms of spasticity on voluntary lower limb muscle function, gait and daily activities during subacute and chronic spinal cord injury.
    Bravo-Esteban E; Taylor J; Abián-Vicén J; Albu S; Simón-Martínez C; Torricelli D; Gómez-Soriano J
    NeuroRehabilitation; 2013; 33(4):531-43. PubMed ID: 24018366
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Calpain as a new therapeutic target for treating spasticity after a spinal cord injury].
    Plantier V; Brocard F
    Med Sci (Paris); 2017; 33(6-7):629-636. PubMed ID: 28990565
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Early escitalopram administration as a preemptive treatment strategy against spasticity after contusive spinal cord injury in rats.
    Ryu Y; Ogata T; Nagao M; Sawada Y; Nishimura R; Fujita N
    Sci Rep; 2021 Mar; 11(1):7120. PubMed ID: 33782426
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.