BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 36471631)

  • 1. H
    Hansen LD; Eijsink VGH; Horn SJ; Várnai A
    Biotechnol Bioeng; 2023 Mar; 120(3):726-736. PubMed ID: 36471631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LPMOs in cellulase mixtures affect fermentation strategies for lactic acid production from lignocellulosic biomass.
    Müller G; Kalyani DC; Horn SJ
    Biotechnol Bioeng; 2017 Mar; 114(3):552-559. PubMed ID: 27596285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The impact of hydrogen peroxide supply on LPMO activity and overall saccharification efficiency of a commercial cellulase cocktail.
    Müller G; Chylenski P; Bissaro B; Eijsink VGH; Horn SJ
    Biotechnol Biofuels; 2018; 11():209. PubMed ID: 30061931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pH-Dependent Relationship between Catalytic Activity and Hydrogen Peroxide Production Shown via Characterization of a Lytic Polysaccharide Monooxygenase from
    Hegnar OA; Petrovic DM; Bissaro B; Alfredsen G; Várnai A; Eijsink VGH
    Appl Environ Microbiol; 2019 Mar; 85(5):. PubMed ID: 30578267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synergistic Action of a Lytic Polysaccharide Monooxygenase and a Cellobiohydrolase from
    Ogunyewo OA; Randhawa A; Gupta M; Kaladhar VC; Verma PK; Yazdani SS
    Appl Environ Microbiol; 2020 Nov; 86(23):. PubMed ID: 32978122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Harnessing the potential of LPMO-containing cellulase cocktails poses new demands on processing conditions.
    Müller G; Várnai A; Johansen KS; Eijsink VG; Horn SJ
    Biotechnol Biofuels; 2015; 8():187. PubMed ID: 26609322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ measurements of oxidation-reduction potential and hydrogen peroxide concentration as tools for revealing LPMO inactivation during enzymatic saccharification of cellulose.
    Kadić A; Várnai A; Eijsink VGH; Horn SJ; Lidén G
    Biotechnol Biofuels; 2021 Feb; 14(1):46. PubMed ID: 33602308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing enzymatic saccharification yields of cellulose at high solid loadings by combining different LPMO activities.
    Angeltveit CF; Várnai A; Eijsink VGH; Horn SJ
    Biotechnol Biofuels Bioprod; 2024 Mar; 17(1):39. PubMed ID: 38461298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigating the role of AA9 LPMOs in enzymatic hydrolysis of differentially steam-pretreated spruce.
    Caputo F; Tõlgo M; Naidjonoka P; Krogh KBRM; Novy V; Olsson L
    Biotechnol Biofuels Bioprod; 2023 Apr; 16(1):68. PubMed ID: 37076886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymatic degradation of sulfite-pulped softwoods and the role of LPMOs.
    Chylenski P; Petrović DM; Müller G; Dahlström M; Bengtsson O; Lersch M; Siika-Aho M; Horn SJ; Eijsink VGH
    Biotechnol Biofuels; 2017; 10():177. PubMed ID: 28702082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of lactic acid from paper sludge by simultaneous saccharification and fermentation.
    Lee SM; Koo YM; Lin J
    Adv Biochem Eng Biotechnol; 2004; 87():173-94. PubMed ID: 15217107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into the H
    Qin X; Yang K; Wang X; Tu T; Wang Y; Zhang J; Su X; Yao B; Huang H; Luo H
    J Agric Food Chem; 2023 May; 71(21):8104-8111. PubMed ID: 37204864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances in lytic polysaccharide monooxygenases with the cellulose-degrading auxiliary activity family 9 to facilitate cellulose degradation for biorefinery.
    Long L; Hu Y; Sun F; Gao W; Hao Z; Yin H
    Int J Biol Macromol; 2022 Oct; 219():68-83. PubMed ID: 35931294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of simultaneous and separate processes: saccharification and thermophilic L-lactate fermentation of catch crop and aquatic plant biomass.
    Akao S; Maeda K; Nakatani S; Hosoi Y; Nagare H; Maeda M; Fujiwara T
    Environ Technol; 2012; 33(13-15):1523-9. PubMed ID: 22988611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lytic polysaccharide monooxygenase (LPMO)-derived saccharification of lignocellulosic biomass.
    Moon M; Lee JP; Park GW; Lee JS; Park HJ; Min K
    Bioresour Technol; 2022 Sep; 359():127501. PubMed ID: 35753567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous saccharification and co-fermentation of crystalline cellulose and sugar cane bagasse hemicellulose hydrolysate to lactate by a thermotolerant acidophilic Bacillus sp.
    Patel MA; Ou MS; Ingram LO; Shanmugam KT
    Biotechnol Prog; 2005; 21(5):1453-60. PubMed ID: 16209550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-situ lignin drives lytic polysaccharide monooxygenases to enhance enzymatic saccharification.
    Ni H; Li M; Li F; Wang L; Xie S; Zhang X; Yu H
    Int J Biol Macromol; 2020 Oct; 161():308-314. PubMed ID: 32526300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into the H
    Hedison TM; Breslmayr E; Shanmugam M; Karnpakdee K; Heyes DJ; Green AP; Ludwig R; Scrutton NS; Kracher D
    FEBS J; 2021 Jul; 288(13):4115-4128. PubMed ID: 33411405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cost-effective simultaneous saccharification and fermentation of l-lactic acid from bagasse sulfite pulp by Bacillus coagulans CC17.
    Zhou J; Ouyang J; Xu Q; Zheng Z
    Bioresour Technol; 2016 Dec; 222():431-438. PubMed ID: 27750196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Lytic Polysaccharide Monooxygenase with Broad Xyloglucan Specificity from the Brown-Rot Fungus Gloeophyllum trabeum and Its Action on Cellulose-Xyloglucan Complexes.
    Kojima Y; Várnai A; Ishida T; Sunagawa N; Petrovic DM; Igarashi K; Jellison J; Goodell B; Alfredsen G; Westereng B; Eijsink VG; Yoshida M
    Appl Environ Microbiol; 2016 Nov; 82(22):6557-6572. PubMed ID: 27590806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.