BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 36471655)

  • 1. Alkali Cation Engineered Chemical Self-Oxidation of Copper Oxide Nanowire-Based Photocathodes.
    Su Kim D; Hoon Choi J; Deshpande NG; Hyeon Lee H; Woong Lee K; Young Oh S; Koun Cho H
    ChemSusChem; 2023 Feb; 16(3):e202202074. PubMed ID: 36471655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving the Stability and Efficiency of CuO Photocathodes for Solar Hydrogen Production through Modification with Iron.
    Cots A; Bonete P; Gómez R
    ACS Appl Mater Interfaces; 2018 Aug; 10(31):26348-26356. PubMed ID: 30016591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible cupric oxide photocathode with enhanced stability for renewable hydrogen energy production from solar water splitting.
    Li Y; Luo K
    RSC Adv; 2019 Mar; 9(15):8350-8354. PubMed ID: 35518699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced Photoelectrochemical Water Oxidation from CdTe Photoanodes Annealed with CdCl
    Su J; Hisatomi T; Minegishi T; Domen K
    Angew Chem Int Ed Engl; 2020 Aug; 59(33):13800-13806. PubMed ID: 32394584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of Cu
    Jeong D; Jo W; Jeong J; Kim T; Han S; Son MK; Jung H
    RSC Adv; 2022 Jan; 12(5):2632-2640. PubMed ID: 35425326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sol-gel deposited Cu2O and CuO thin films for photocatalytic water splitting.
    Lim YF; Chua CS; Lee CJ; Chi D
    Phys Chem Chem Phys; 2014 Dec; 16(47):25928-34. PubMed ID: 25355367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward Robust Photoelectrochemical Operation of Cuprous Oxide Nanowire Photocathodes Using a Strategically Designed Solution-Processed Titanium Oxide Passivation Coating.
    Kim JS; Cho SW; Deshpande NG; Kim YB; Yun YD; Jung SH; Kim DS; Cho HK
    ACS Appl Mater Interfaces; 2019 Apr; 11(16):14840-14847. PubMed ID: 30938151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying Copper Vacancies and Their Role in the CuO Based Photocathode for Water Splitting.
    Wang Z; Zhang L; Schülli TU; Bai Y; Monny SA; Du A; Wang L
    Angew Chem Int Ed Engl; 2019 Dec; 58(49):17604-17609. PubMed ID: 31560406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solution-Processed Synthesis of Copper Oxide (Cu
    Aktar A; Ahmmed S; Hossain J; Ismail ABM
    ACS Omega; 2020 Oct; 5(39):25125-25134. PubMed ID: 33043191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A microfluidic photoelectrochemical cell for solar-driven CO
    Kalamaras E; Belekoukia M; Tan JZY; Xuan J; Maroto-Valer MM; Andresen JM
    Faraday Discuss; 2019 Jul; 215(0):329-344. PubMed ID: 30942213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stable and Efficient CuO Based Photocathode through Oxygen-Rich Composition and Au-Pd Nanostructure Incorporation for Solar-Hydrogen Production.
    Masudy-Panah S; Siavash Moakhar R; Chua CS; Kushwaha A; Dalapati GK
    ACS Appl Mater Interfaces; 2017 Aug; 9(33):27596-27606. PubMed ID: 28731678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thiol-Amine-Based Solution Processing of Cu
    Zhang X; Yang W; Niu W; Adams P; Siol S; Wang Z; Tilley SD
    ChemSusChem; 2021 Sep; 14(18):3967-3974. PubMed ID: 34324265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly Active Three-Dimensional NiFe/Cu
    Chen H; Gao Y; Sun L
    ChemSusChem; 2017 Apr; 10(7):1475-1481. PubMed ID: 28101949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and Compositional Investigations on the Stability of Cuprous Oxide Nanowire Photocathodes for Photoelectrochemical Water Splitting.
    Son MK; Pan L; Mayer MT; Hagfeldt A; Grätzel M; Luo J
    ACS Appl Mater Interfaces; 2021 Nov; 13(46):55080-55091. PubMed ID: 34761678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving the photoelectrochemical water splitting performance of CuO photocathodes using a protective CuBi
    Lam NH; Truong NTN; Le N; Ahn KS; Jo Y; Kim CD; Jung JH
    Sci Rep; 2023 Apr; 13(1):5776. PubMed ID: 37031237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon-layer-protected cuprous oxide nanowire arrays for efficient water reduction.
    Zhang Z; Dua R; Zhang L; Zhu H; Zhang H; Wang P
    ACS Nano; 2013 Feb; 7(2):1709-17. PubMed ID: 23363436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-Supported Cu-Based Nanowire Arrays as Noble-Metal-Free Electrocatalysts for Oxygen Evolution.
    Hou CC; Fu WF; Chen Y
    ChemSusChem; 2016 Aug; 9(16):2069-73. PubMed ID: 27440473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Embedment of anodized p-type Cu₂O thin films with CuO nanowires for improvement in photoelectrochemical stability.
    Wang P; Ng YH; Amal R
    Nanoscale; 2013 Apr; 5(7):2952-8. PubMed ID: 23455357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tree branch-shaped cupric oxide for highly effective photoelectrochemical water reduction.
    Jang YJ; Jang JW; Choi SH; Kim JY; Kim JH; Youn DH; Kim WY; Han S; Sung Lee J
    Nanoscale; 2015 May; 7(17):7624-31. PubMed ID: 25784310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acceptor-Doping Accelerated Charge Separation in Cu
    Zhang M; Wang J; Xue H; Zhang J; Peng S; Han X; Deng Y; Hu W
    Angew Chem Int Ed Engl; 2020 Oct; 59(42):18463-18467. PubMed ID: 32533640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.