These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 36472226)

  • 1. Leveraging the elastic deformability of polydimethylsiloxane microfluidic channels for efficient intracellular delivery.
    Alhmoud H; Alkhaled M; Kaynak BE; Hanay MS
    Lab Chip; 2023 Feb; 23(4):714-726. PubMed ID: 36472226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipid-Bicelle-Coated Microfluidics for Intracellular Delivery with Reduced Fouling.
    Belling JN; Heidenreich LK; Park JH; Kawakami LM; Takahashi J; Frost IM; Gong Y; Young TD; Jackman JA; Jonas SJ; Cho NJ; Weiss PS
    ACS Appl Mater Interfaces; 2020 Oct; 12(41):45744-45752. PubMed ID: 32940030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of a microfluidic device to quantify dynamic intra-nuclear deformation during cell migration through confining environments.
    Davidson PM; Sliz J; Isermann P; Denais C; Lammerding J
    Integr Biol (Camb); 2015 Dec; 7(12):1534-46. PubMed ID: 26549481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Low-Backpressure Single-Cell Point Constriction for Cytosolic Delivery Based on Rapid Membrane Deformations.
    Xing X; Pan Y; Yobas L
    Anal Chem; 2018 Feb; 90(3):1836-1844. PubMed ID: 29308899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of gold nanoparticles on thermal gradient generation and thermotaxis of E. coli cells in microfluidic device.
    Murugesan N; Panda T; Das SK
    Biomed Microdevices; 2016 Aug; 18(4):53. PubMed ID: 27246690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional cargo delivery into mouse and human fibroblasts using a versatile microfluidic device.
    Lam KH; Fernandez-Perez A; Schmidtke DW; Munshi NV
    Biomed Microdevices; 2018 Jun; 20(3):52. PubMed ID: 29938310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Desktop aligner for fabrication of multilayer microfluidic devices.
    Li X; Yu ZT; Geraldo D; Weng S; Alve N; Dun W; Kini A; Patel K; Shu R; Zhang F; Li G; Jin Q; Fu J
    Rev Sci Instrum; 2015 Jul; 86(7):075008. PubMed ID: 26233409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy.
    Pandiyan VP; John R
    Appl Opt; 2016 Jan; 55(3):A54-9. PubMed ID: 26835958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Small volume low mechanical stress cytometry using computer-controlled Braille display microfluidics.
    Tung YC; Torisawa YS; Futai N; Takayama S
    Lab Chip; 2007 Nov; 7(11):1497-503. PubMed ID: 17960277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fully Stretchable Capillary Microfluidics-Integrated Nanoporous Gold Electrochemical Sensor for Wearable Continuous Glucose Monitoring.
    Bae CW; Toi PT; Kim BY; Lee WI; Lee HB; Hanif A; Lee EH; Lee NE
    ACS Appl Mater Interfaces; 2019 Apr; 11(16):14567-14575. PubMed ID: 30942999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clogging of microfluidic constrictions by monoclonal antibody aggregates: role of aggregate shape and deformability.
    DuchĂȘne C; Filipe V; Huille S; Lindner A
    Soft Matter; 2020 Jan; 16(4):921-928. PubMed ID: 31813947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A high-throughput microfluidic device inspired by the Wheatstone bridge principle for characterizing the mechanical properties of single cells.
    Hu S; Liu T; Xue C; Li Y; Yang Y; Xu X; Liu B; Chen X; Zhao Y; Qin K
    Anal Methods; 2022 Dec; 14(46):4813-4821. PubMed ID: 36382629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inertia-Acoustophoresis Hybrid Microfluidic Device for Rapid and Efficient Cell Separation.
    Kim U; Oh B; Ahn J; Lee S; Cho Y
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasma free reversible and irreversible microfluidic bonding.
    Chu M; Nguyen TT; Lee EK; Morival JL; Khine M
    Lab Chip; 2017 Jan; 17(2):267-273. PubMed ID: 27990540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasma-enhanced protein patterning in a microfluidic compartmentalized platform for multi-organs-on-chip: a liver-tumor model.
    Ferrari E; Ugolini GS; Piutti C; Marzorati S; Rasponi M
    Biomed Mater; 2021 Jun; 16(4):. PubMed ID: 34030149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simple PDMS-based microfluidic channel design that removes bubbles for long-term on-chip culture of mammalian cells.
    Zheng W; Wang Z; Zhang W; Jiang X
    Lab Chip; 2010 Nov; 10(21):2906-10. PubMed ID: 20844778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of four functional biocompatible pressure-sensitive adhesives for rapid prototyping of cell-based lab-on-a-chip and organ-on-a-chip systems.
    Kratz SRA; Eilenberger C; Schuller P; Bachmann B; Spitz S; Ertl P; Rothbauer M
    Sci Rep; 2019 Jun; 9(1):9287. PubMed ID: 31243326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical simulation of intracellular drug delivery via rapid squeezing.
    Nikfar M; Razizadeh M; Paul R; Zhou Y; Liu Y
    Biomicrofluidics; 2021 Jul; 15(4):044102. PubMed ID: 34367404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co-culture of Two Different Cell Lines in a Two-Layer Microfluidic Device.
    Rahman SM; Martin EC; Melvin AT
    Methods Mol Biol; 2022; 2535():33-47. PubMed ID: 35867220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Programmable microfluidic logic device fabricated with a shape memory polymer.
    Yang SH; Park J; Youn JR; Song YS
    Lab Chip; 2018 Sep; 18(18):2865-2872. PubMed ID: 30105331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.