These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 36472226)

  • 41. Dosage-controlled intracellular delivery mediated by acoustofluidics for lab on a chip applications.
    Salari A; Appak-Baskoy S; Coe IR; Abousawan J; Antonescu CN; Tsai SSH; Kolios MC
    Lab Chip; 2021 May; 21(9):1788-1797. PubMed ID: 33734246
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A portable pressure pump for microfluidic lab-on-a-chip systems using a porous polydimethylsiloxane (PDMS) sponge.
    Cha KJ; Kim DS
    Biomed Microdevices; 2011 Oct; 13(5):877-83. PubMed ID: 21698383
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Deformability- and size-based microcapsule sorting.
    Vesperini D; Chaput O; Munier N; Maire P; Edwards-Lévy F; Salsac AV; Le Goff A
    Med Eng Phys; 2017 Oct; 48():68-74. PubMed ID: 28728866
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Microfluidic and Paper-Based Devices for Disease Detection and Diagnostic Research.
    Campbell JM; Balhoff JB; Landwehr GM; Rahman SM; Vaithiyanathan M; Melvin AT
    Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30213089
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Polymeric Microfluidic Devices Fabricated Using Epoxy Resin for Chemically Demanding and Day-Long Experiments.
    Lee J; Kim M
    Biosensors (Basel); 2022 Oct; 12(10):. PubMed ID: 36290975
    [No Abstract]   [Full Text] [Related]  

  • 46. Generating Multicompartmental 3D Biological Constructs Interfaced through Sequential Injections in Microfluidic Devices.
    Ugolini GS; Visone R; Redaelli A; Moretti M; Rasponi M
    Adv Healthc Mater; 2017 May; 6(10):. PubMed ID: 28267277
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Tobacco protoplast culture in a polydimethylsiloxane-based microfluidic channel.
    Ko JM; Ju J; Lee S; Cha HC
    Protoplasma; 2006 May; 227(2-4):237-40. PubMed ID: 16736262
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Multi-Resin Masked Stereolithography (MSLA) 3D Printing for Rapid and Inexpensive Prototyping of Microfluidic Chips with Integrated Functional Components.
    Ahmed I; Sullivan K; Priye A
    Biosensors (Basel); 2022 Aug; 12(8):. PubMed ID: 36005047
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enhanced Intraliposomal Metallic Nanoparticle Payload Capacity Using Microfluidic-Assisted Self-Assembly.
    Al-Ahmady ZS; Donno R; Gennari A; Prestat E; Marotta R; Mironov A; Newman L; Lawrence MJ; Tirelli N; Ashford M; Kostarelos K
    Langmuir; 2019 Oct; 35(41):13318-13331. PubMed ID: 31478662
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Negligible-cost microfluidic device fabrication using 3D-printed interconnecting channel scaffolds.
    Felton H; Hughes R; Diaz-Gaxiola A
    PLoS One; 2021; 16(2):e0245206. PubMed ID: 33534849
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Low-power microfluidic electro-hydraulic pump (EHP).
    Lui C; Stelick S; Cady N; Batt C
    Lab Chip; 2010 Jan; 10(1):74-9. PubMed ID: 20024053
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Practical fabrication of microfluidic platforms for live-cell microscopy.
    Lorusso D; Nikolov HN; Milner JS; Ochotny NM; Sims SM; Dixon SJ; Holdsworth DW
    Biomed Microdevices; 2016 Oct; 18(5):78. PubMed ID: 27523472
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Microfluidic pressure in paper (μPiP): rapid prototyping and low-cost liquid handling for on-chip diagnostics.
    Islam MN; Yost JW; Gagnon ZR
    Analyst; 2022 Feb; 147(4):587-596. PubMed ID: 35037668
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A new microfluidic device for electric lysis and separation of cells.
    Brun M; Frénéa-Robin M; Chateaux JF; Haddour N; Deman AL; Ferrigno R
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6281-4. PubMed ID: 23367365
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Engineering Shelf-Stable Coating for Microfluidic Organ-on-a-Chip Using Bioinspired Catecholamine Polymers.
    Khetani S; Yong KW; Ozhukil Kollath V; Eastick E; Azarmanesh M; Karan K; Sen A; Sanati-Nezhad A
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):6910-6923. PubMed ID: 31971367
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Rapid development and optimization of paper microfluidic designs using software automation.
    Potter J; Brisk P; Grover WH
    Anal Chim Acta; 2021 Nov; 1184():338985. PubMed ID: 34625247
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Efficient and gentle delivery of molecules into cells with different elasticity
    Uvizl A; Goswami R; Gandhi SD; Augsburg M; Buchholz F; Guck J; Mansfeld J; Girardo S
    Lab Chip; 2021 Jun; 21(12):2437-2452. PubMed ID: 33977944
    [TBL] [Abstract][Full Text] [Related]  

  • 58. In silico design and 3D printing of microfluidic chips for the preparation of size-controllable siRNA nanocomplexes.
    Li Y; Bøtker J; Rantanen J; Yang M; Bohr A
    Int J Pharm; 2020 Jun; 583():119388. PubMed ID: 32376446
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Automated Cell Mechanical Characterization by On-Chip Sequential Squeezing: From Static to Dynamic.
    Li P; Liu X; Kojima M; Huang Q; Arai T
    Langmuir; 2021 Jul; 37(27):8083-8094. PubMed ID: 34171189
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Simple, low-cost fabrication of semi-circular channel using the surface tension of solder paste and its application to microfluidic valves.
    Yan S; Li Y; Zhu Y; Liu M; Zhao Q; Yuan D; Yun G; Zhang S; Wen W; Tang SY; Li W
    Electrophoresis; 2018 Jun; 39(12):1460-1465. PubMed ID: 29543983
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.