These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 36472304)

  • 61. MicroRNA-16 feedback loop with p53 and Wip1 can regulate cell fate determination between apoptosis and senescence in DNA damage response.
    Issler MVC; Mombach JCM
    PLoS One; 2017; 12(10):e0185794. PubMed ID: 28968438
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Identification and characterisation of Emp53, the homologue of human tumor suppressor p53, from Echinococcus multilocularis: its role in apoptosis and the oxidative stress response.
    Cheng Z; Zhu S; Wang L; Liu F; Tian H; Pengsakul T; Wang Y
    Int J Parasitol; 2015 Jul; 45(8):517-26. PubMed ID: 25858091
    [TBL] [Abstract][Full Text] [Related]  

  • 63. TAp73 promotes cell survival upon genotoxic stress by inhibiting p53 activity.
    Chen D; Ming L; Zou F; Peng Y; Van Houten B; Yu J; Zhang L
    Oncotarget; 2014 Sep; 5(18):8107-22. PubMed ID: 25237903
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Stabilization and activation of p53 induced by Cdk5 contributes to neuronal cell death.
    Lee JH; Kim HS; Lee SJ; Kim KT
    J Cell Sci; 2007 Jul; 120(Pt 13):2259-71. PubMed ID: 17591690
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Cell Fate Regulation upon DNA Damage: p53 Serine 46 Kinases Pave the Cell Death Road.
    Liebl MC; Hofmann TG
    Bioessays; 2019 Dec; 41(12):e1900127. PubMed ID: 31621101
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The involvement of MAPK signaling pathways in determining the cellular response to p53 activation: cell cycle arrest or apoptosis.
    Brown L; Benchimol S
    J Biol Chem; 2006 Feb; 281(7):3832-40. PubMed ID: 16330547
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Genotoxic stress-mediated cell cycle activities for the decision of cellular fate.
    Erol A
    Cell Cycle; 2011 Oct; 10(19):3239-48. PubMed ID: 21921675
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A new p53 target gene, RKIP, is essential for DNA damage-induced cellular senescence and suppression of ERK activation.
    Lee SJ; Lee SH; Yoon MH; Park BJ
    Neoplasia; 2013 Jul; 15(7):727-37. PubMed ID: 23814485
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Exploring the Influence of Parameters on the p53 Response When Single-Stranded Breaks and Double-Stranded Breaks Coexist.
    Ma A; Dai X
    Interdiscip Sci; 2019 Dec; 11(4):679-690. PubMed ID: 31222582
    [TBL] [Abstract][Full Text] [Related]  

  • 70. XPC multifaceted roles beyond DNA damage repair: p53-dependent and p53-independent functions of XPC in cell fate decisions.
    Zebian A; El-Dor M; Shaito A; Mazurier F; Rezvani HR; Zibara K
    Mutat Res Rev Mutat Res; 2022; 789():108400. PubMed ID: 35690409
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The G
    Cui J; Wang J; Huang S; Jiang X; Li Y; Wu W; Zhang X
    Food Chem Toxicol; 2018 May; 115():205-211. PubMed ID: 29545144
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Time course of changes in oxidative stress and stress-induced proteins in cardiomyocytes exposed to doxorubicin and prevention by vitamin C.
    Ludke A; Akolkar G; Ayyappan P; Sharma AK; Singal PK
    PLoS One; 2017; 12(7):e0179452. PubMed ID: 28678856
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Elucidating the Implications of Diverse Dynamical Responses in p53 Protein.
    Charan K; Giri A; Kar S
    Chemphyschem; 2023 Feb; 24(4):e202200537. PubMed ID: 36208026
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Post-translational modifications of p53 tumor suppressor: determinants of its functional targets.
    Taira N; Yoshida K
    Histol Histopathol; 2012 Apr; 27(4):437-43. PubMed ID: 22374721
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The intersection between DNA damage response and cell death pathways.
    Nowsheen S; Yang ES
    Exp Oncol; 2012 Oct; 34(3):243-54. PubMed ID: 23070009
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A two-step mechanism for cell fate decision by coordination of nuclear and mitochondrial p53 activities.
    Tian XJ; Liu F; Zhang XP; Li J; Wang W
    PLoS One; 2012; 7(6):e38164. PubMed ID: 22679490
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Coordination between cell cycle progression and cell fate decision by the p53 and E2F1 pathways in response to DNA damage.
    Zhang XP; Liu F; Wang W
    J Biol Chem; 2010 Oct; 285(41):31571-80. PubMed ID: 20685653
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Ribosomal protein S27-like, a p53-inducible modulator of cell fate in response to genotoxic stress.
    Li J; Tan J; Zhuang L; Banerjee B; Yang X; Chau JF; Lee PL; Hande MP; Li B; Yu Q
    Cancer Res; 2007 Dec; 67(23):11317-26. PubMed ID: 18056458
    [TBL] [Abstract][Full Text] [Related]  

  • 79. How the Other Half Lives: What p53 Does When It Is Not Being a Transcription Factor.
    Ho T; Tan BX; Lane D
    Int J Mol Sci; 2019 Dec; 21(1):. PubMed ID: 31861395
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Modeling amplified p53 responses under DNA-PK inhibition in DNA damage response.
    Sun T; Li X; Shen P
    Oncotarget; 2017 Mar; 8(10):17105-17114. PubMed ID: 28177883
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.