These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 36472475)
1. Structural Analysis and Prediction of Hematotoxicity Using Deep Learning Approaches. Long TZ; Shi SH; Liu S; Lu AP; Liu ZQ; Li M; Hou TJ; Cao DS J Chem Inf Model; 2023 Jan; 63(1):111-125. PubMed ID: 36472475 [TBL] [Abstract][Full Text] [Related]
2. In silico prediction of chemical-induced hematotoxicity with machine learning and deep learning methods. Hua Y; Shi Y; Cui X; Li X Mol Divers; 2021 Aug; 25(3):1585-1596. PubMed ID: 34196933 [TBL] [Abstract][Full Text] [Related]
3. Prediction of blood-brain barrier permeability using machine learning approaches based on various molecular representation. Liang L; Liu Z; Yang X; Zhang Y; Liu H; Chen Y Mol Inform; 2024 Sep; 43(9):e202300327. PubMed ID: 38864837 [TBL] [Abstract][Full Text] [Related]
4. Deep Learning Algorithm Based on Molecular Fingerprint for Prediction of Drug-Induced Liver Injury. Yang Q; Zhang S; Li Y Toxicology; 2024 Feb; 502():153736. PubMed ID: 38307192 [TBL] [Abstract][Full Text] [Related]
5. In silico prediction of ocular toxicity of compounds using explainable machine learning and deep learning approaches. Zhou Y; Wang Z; Huang Z; Li W; Chen Y; Yu X; Tang Y; Liu G J Appl Toxicol; 2024 Jun; 44(6):892-907. PubMed ID: 38329145 [TBL] [Abstract][Full Text] [Related]
6. Structural Analysis and Identification of False Positive Hits in Luciferase-Based Assays. Yang ZY; Dong J; Yang ZJ; Lu AP; Hou TJ; Cao DS J Chem Inf Model; 2020 Apr; 60(4):2031-2043. PubMed ID: 32202787 [TBL] [Abstract][Full Text] [Related]
7. Enhancing Multi-species Liver Microsomal Stability Prediction through Artificial Intelligence. Long TZ; Jiang DJ; Shi SH; Deng YC; Wang WX; Cao DS J Chem Inf Model; 2024 Apr; 64(8):3222-3236. PubMed ID: 38498003 [TBL] [Abstract][Full Text] [Related]
8. ChemFLuo: a web-server for structure analysis and identification of fluorescent compounds. Yang ZY; Dong J; Yang ZJ; Yin M; Jiang HL; Lu AP; Chen X; Hou TJ; Cao DS Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33201188 [TBL] [Abstract][Full Text] [Related]
9. AttentiveSkin: To Predict Skin Corrosion/Irritation Potentials of Chemicals via Explainable Machine Learning Methods. Huang Z; Lou S; Wang H; Li W; Liu G; Tang Y Chem Res Toxicol; 2024 Feb; 37(2):361-373. PubMed ID: 38294881 [TBL] [Abstract][Full Text] [Related]
10. Environmental toxicity risk evaluation of nitroaromatic compounds: Machine learning driven binary/multiple classification and design of safe alternatives. Hao Y; Fan T; Sun G; Li F; Zhang N; Zhao L; Zhong R Food Chem Toxicol; 2022 Dec; 170():113461. PubMed ID: 36243219 [TBL] [Abstract][Full Text] [Related]
11. Prediction of IDO1 Inhibitors by a Fingerprint-Based Stacking Ensemble Model Named IDO1Stack. Sun H; Yang Q; Yu X; Huang M; Ding M; Li W; Tang Y; Liu G ChemMedChem; 2023 Sep; 18(17):e202300151. PubMed ID: 37340939 [TBL] [Abstract][Full Text] [Related]
12. Validating the validation: reanalyzing a large-scale comparison of deep learning and machine learning models for bioactivity prediction. Robinson MC; Glen RC; Lee AA J Comput Aided Mol Des; 2020 Jul; 34(7):717-730. PubMed ID: 31960253 [TBL] [Abstract][Full Text] [Related]
13. Predicting the reproductive toxicity of chemicals using ensemble learning methods and molecular fingerprints. Feng H; Zhang L; Li S; Liu L; Yang T; Yang P; Zhao J; Arkin IT; Liu H Toxicol Lett; 2021 Apr; 340():4-14. PubMed ID: 33421549 [TBL] [Abstract][Full Text] [Related]
14. Improved GNNs for Log Duan YJ; Fu L; Zhang XC; Long TZ; He YH; Liu ZQ; Lu AP; Deng YF; Hsieh CY; Hou TJ; Cao DS J Chem Inf Model; 2023 Apr; 63(8):2345-2359. PubMed ID: 37000044 [TBL] [Abstract][Full Text] [Related]
15. In silico prediction of potential drug-induced nephrotoxicity with machine learning methods. Gong Y; Teng D; Wang Y; Gu Y; Wu Z; Li W; Tang Y; Liu G J Appl Toxicol; 2022 Oct; 42(10):1639-1650. PubMed ID: 35429013 [TBL] [Abstract][Full Text] [Related]
16. Lou S; Yu Z; Huang Z; Wang H; Pan F; Li W; Liu G; Tang Y Chem Res Toxicol; 2024 Mar; 37(3):513-524. PubMed ID: 38380652 [TBL] [Abstract][Full Text] [Related]
17. Developing machine learning approaches to identify candidate persistent, mobile and toxic (PMT) and very persistent and very mobile (vPvM) substances based on molecular structure. Han M; Jin B; Liang J; Huang C; Arp HPH Water Res; 2023 Oct; 244():120470. PubMed ID: 37595327 [TBL] [Abstract][Full Text] [Related]
18. Automated Machine Learning for the Early Prediction of the Severity of Acute Pancreatitis in Hospitals. Yin M; Zhang R; Zhou Z; Liu L; Gao J; Xu W; Yu C; Lin J; Liu X; Xu C; Zhu J Front Cell Infect Microbiol; 2022; 12():886935. PubMed ID: 35755847 [TBL] [Abstract][Full Text] [Related]
19. In silico prediction of drug-induced ototoxicity using machine learning and deep learning methods. Huang X; Tang F; Hua Y; Li X Chem Biol Drug Des; 2021 Aug; 98(2):248-257. PubMed ID: 34013639 [TBL] [Abstract][Full Text] [Related]
20. In silico prediction of chemical reproductive toxicity using machine learning. Jiang C; Yang H; Di P; Li W; Tang Y; Liu G J Appl Toxicol; 2019 Jun; 39(6):844-854. PubMed ID: 30687929 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]