BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 36472475)

  • 1. Structural Analysis and Prediction of Hematotoxicity Using Deep Learning Approaches.
    Long TZ; Shi SH; Liu S; Lu AP; Liu ZQ; Li M; Hou TJ; Cao DS
    J Chem Inf Model; 2023 Jan; 63(1):111-125. PubMed ID: 36472475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In silico prediction of chemical-induced hematotoxicity with machine learning and deep learning methods.
    Hua Y; Shi Y; Cui X; Li X
    Mol Divers; 2021 Aug; 25(3):1585-1596. PubMed ID: 34196933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Learning Algorithm Based on Molecular Fingerprint for Prediction of Drug-Induced Liver Injury.
    Yang Q; Zhang S; Li Y
    Toxicology; 2024 Feb; 502():153736. PubMed ID: 38307192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of blood-brain barrier permeability using machine learning approaches based on various molecular representation.
    Liang L; Liu Z; Yang X; Zhang Y; Liu H; Chen Y
    Mol Inform; 2024 Jun; ():e202300327. PubMed ID: 38864837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In silico prediction of ocular toxicity of compounds using explainable machine learning and deep learning approaches.
    Zhou Y; Wang Z; Huang Z; Li W; Chen Y; Yu X; Tang Y; Liu G
    J Appl Toxicol; 2024 Jun; 44(6):892-907. PubMed ID: 38329145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing Multi-species Liver Microsomal Stability Prediction through Artificial Intelligence.
    Long TZ; Jiang DJ; Shi SH; Deng YC; Wang WX; Cao DS
    J Chem Inf Model; 2024 Apr; 64(8):3222-3236. PubMed ID: 38498003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural Analysis and Identification of False Positive Hits in Luciferase-Based Assays.
    Yang ZY; Dong J; Yang ZJ; Lu AP; Hou TJ; Cao DS
    J Chem Inf Model; 2020 Apr; 60(4):2031-2043. PubMed ID: 32202787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ChemFLuo: a web-server for structure analysis and identification of fluorescent compounds.
    Yang ZY; Dong J; Yang ZJ; Yin M; Jiang HL; Lu AP; Chen X; Hou TJ; Cao DS
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33201188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AttentiveSkin: To Predict Skin Corrosion/Irritation Potentials of Chemicals via Explainable Machine Learning Methods.
    Huang Z; Lou S; Wang H; Li W; Liu G; Tang Y
    Chem Res Toxicol; 2024 Feb; 37(2):361-373. PubMed ID: 38294881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmental toxicity risk evaluation of nitroaromatic compounds: Machine learning driven binary/multiple classification and design of safe alternatives.
    Hao Y; Fan T; Sun G; Li F; Zhang N; Zhao L; Zhong R
    Food Chem Toxicol; 2022 Dec; 170():113461. PubMed ID: 36243219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of IDO1 Inhibitors by a Fingerprint-Based Stacking Ensemble Model Named IDO1Stack.
    Sun H; Yang Q; Yu X; Huang M; Ding M; Li W; Tang Y; Liu G
    ChemMedChem; 2023 Sep; 18(17):e202300151. PubMed ID: 37340939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validating the validation: reanalyzing a large-scale comparison of deep learning and machine learning models for bioactivity prediction.
    Robinson MC; Glen RC; Lee AA
    J Comput Aided Mol Des; 2020 Jul; 34(7):717-730. PubMed ID: 31960253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting the reproductive toxicity of chemicals using ensemble learning methods and molecular fingerprints.
    Feng H; Zhang L; Li S; Liu L; Yang T; Yang P; Zhao J; Arkin IT; Liu H
    Toxicol Lett; 2021 Apr; 340():4-14. PubMed ID: 33421549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved GNNs for Log 
    Duan YJ; Fu L; Zhang XC; Long TZ; He YH; Liu ZQ; Lu AP; Deng YF; Hsieh CY; Hou TJ; Cao DS
    J Chem Inf Model; 2023 Apr; 63(8):2345-2359. PubMed ID: 37000044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In silico prediction of potential drug-induced nephrotoxicity with machine learning methods.
    Gong Y; Teng D; Wang Y; Gu Y; Wu Z; Li W; Tang Y; Liu G
    J Appl Toxicol; 2022 Oct; 42(10):1639-1650. PubMed ID: 35429013
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Lou S; Yu Z; Huang Z; Wang H; Pan F; Li W; Liu G; Tang Y
    Chem Res Toxicol; 2024 Mar; 37(3):513-524. PubMed ID: 38380652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developing machine learning approaches to identify candidate persistent, mobile and toxic (PMT) and very persistent and very mobile (vPvM) substances based on molecular structure.
    Han M; Jin B; Liang J; Huang C; Arp HPH
    Water Res; 2023 Oct; 244():120470. PubMed ID: 37595327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated Machine Learning for the Early Prediction of the Severity of Acute Pancreatitis in Hospitals.
    Yin M; Zhang R; Zhou Z; Liu L; Gao J; Xu W; Yu C; Lin J; Liu X; Xu C; Zhu J
    Front Cell Infect Microbiol; 2022; 12():886935. PubMed ID: 35755847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In silico prediction of drug-induced ototoxicity using machine learning and deep learning methods.
    Huang X; Tang F; Hua Y; Li X
    Chem Biol Drug Des; 2021 Aug; 98(2):248-257. PubMed ID: 34013639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In silico prediction of chemical reproductive toxicity using machine learning.
    Jiang C; Yang H; Di P; Li W; Tang Y; Liu G
    J Appl Toxicol; 2019 Jun; 39(6):844-854. PubMed ID: 30687929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.