These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 36472549)

  • 1. Study of 400 MHz microwave conduction loss effect for a hydrolysis reaction by thermostable β-Glucosidase HT1.
    Nagashima I; Sugiyama JI; Shimizu H
    Biosci Biotechnol Biochem; 2023 Jan; 87(2):158-162. PubMed ID: 36472549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficiency of 2.45 and 5.80 GHz microwave irradiation for a hydrolysis reaction by thermostable β-Glucosidase HT1.
    Nagashima I; Sugiyama J; Sakuta T; Sasaki M; Shimizu H
    Biosci Biotechnol Biochem; 2014; 78(5):758-60. PubMed ID: 25035975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dielectric properties of Mexican sauces for microwave-assisted pasteurization process.
    Hernandez-Gomez ES; Olvera-Cervantes JL; Sosa-Morales ME; Corona-Vazquez B; Corona-Chavez A; Lujan-Hidalgo MC; Kataria TK
    J Food Sci; 2021 Jan; 86(1):112-119. PubMed ID: 33368317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microwave-Assisted Synthesis of Glycoconjugates by Transgalactosylation with Recombinant Thermostable β-Glycosidase from Pyrococcus.
    Henze M; Merker D; Elling L
    Int J Mol Sci; 2016 Feb; 17(2):210. PubMed ID: 26861292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of ionic conduction on hydrothermal hydrolysis of corn starch and crystalline cellulose induced by microwave irradiation.
    Tsubaki S; Oono K; Onda A; Yanagisawa K; Mitani T; Azuma JI
    Carbohydr Polym; 2016 Feb; 137():594-599. PubMed ID: 26686168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid synthesis of Gemini surfactants using a novel 915-MHz microwave apparatus.
    Horikoshi S; Sato T; Abe M
    J Oleo Sci; 2013; 62(1):39-44. PubMed ID: 23357816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microwave activation of enzymatic catalysis.
    Young DD; Nichols J; Kelly RM; Deiters A
    J Am Chem Soc; 2008 Aug; 130(31):10048-9. PubMed ID: 18613673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different effects of microwave energy and conventional heat on the activity of a thermophilic beta-galactosidase from Bacillus acidocaldarius.
    La Cara F; Scarfi MR; D'Auria S; Massa R; d'Ambrosio G; Franceschetti G; Rossi M; De Rosa M
    Bioelectromagnetics; 1999; 20(3):172-6. PubMed ID: 10194559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microwave-assisted hydrothermal hydrolysis of cellobiose and effects of additions of halide salts.
    Tsubaki S; Oono K; Onda A; Yanagisawa K; Azuma J
    Bioresour Technol; 2012 Nov; 123():703-6. PubMed ID: 22939594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The microwave absorption of emulsions containing aqueous micro- and nanodroplets: a means to optimize microwave heating.
    Holtze C; Sivaramakrishnan R; Antonietti M; Tsuwi J; Kremer F; Kramer KD
    J Colloid Interface Sci; 2006 Oct; 302(2):651-7. PubMed ID: 16930614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microwave heating of water, ice, and saline solution: molecular dynamics study.
    Tanaka M; Sato M
    J Chem Phys; 2007 Jan; 126(3):034509. PubMed ID: 17249886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal inactivation of mushroom polyphenoloxidase employing 2450 MHz microwave radiation.
    Rodríguez-López JN; Fenoll LG; Tudela J; Devece C; Sánchez-Hernández D; de Los Reyes E; García-Cánovas F
    J Agric Food Chem; 1999 Aug; 47(8):3028-35. PubMed ID: 10552603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microwave-assisted synthesis of galacto-oligosaccharides from lactose with immobilized beta-galactosidase from Kluyveromyces lactis.
    Maugard T; Gaunt D; Legoy MD; Besson T
    Biotechnol Lett; 2003 Apr; 25(8):623-9. PubMed ID: 12882156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inactivation of Salmonella Senftenberg, Salmonella Typhimurium and Salmonella Tennessee in peanut butter by 915 MHz microwave heating.
    Song WJ; Kang DH
    Food Microbiol; 2016 Feb; 53(Pt B):48-52. PubMed ID: 26678129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dielectric properties of fresh rabbit meat in the microwave range.
    Gómez-Salazar JA; Alvarado-Iglesias R; Kaur T; Corona-Chávez A; Olvera-Cervantes JL; Rojas-Laguna R; Sosa-Morales ME
    J Food Sci; 2021 Mar; 86(3):952-959. PubMed ID: 33580559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dielectric spectroscopy of fresh fruit and vegetable tissues from 10 to 1800 MHz.
    Nelson SO
    J Microw Power Electromagn Energy; 2005; 40(1):31-47. PubMed ID: 16673832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parallel microwave chemistry in silicon carbide reactor platforms: an in-depth investigation into heating characteristics.
    Damm M; Kappe CO
    Mol Divers; 2009 Nov; 13(4):529-43. PubMed ID: 19548098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of microwave effects on the lipase-catalyzed hydrolysis.
    Chen CC; Reddy PM; Devi CS; Chang PC; Ho YP
    Enzyme Microb Technol; 2016 Jan; 82():164-172. PubMed ID: 26672464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microwave dielectric spectra and molecular relaxation in formamide-N,N-dimethylformamide binary mixtures.
    Sengwa RJ; Choudhary S; Khatri V
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Nov; 82(1):279-82. PubMed ID: 21831698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational modeling of 915 MHz microwave ablation: Comparative assessment of temperature-dependent tissue dielectric models.
    Deshazer G; Hagmann M; Merck D; Sebek J; Moore KB; Prakash P
    Med Phys; 2017 Sep; 44(9):4859-4868. PubMed ID: 28543540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.