BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 36473278)

  • 1. Convenient site-selective protein coupling from bacterial raw lysates to coenzyme A-modified tobacco mosaic virus (TMV) by Bacillus subtilis Sfp phosphopantetheinyl transferase.
    Geiger F; Wendlandt T; Berking T; Spatz JP; Wege C
    Virology; 2023 Jan; 578():61-70. PubMed ID: 36473278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of Sfp, a Bacillus subtilis phosphopantetheinyl transferase for peptidyl carrier protein domains in peptide synthetases.
    Quadri LE; Weinreb PH; Lei M; Nakano MM; Zuber P; Walsh CT
    Biochemistry; 1998 Feb; 37(6):1585-95. PubMed ID: 9484229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetically encoded short peptide tag for versatile protein labeling by Sfp phosphopantetheinyl transferase.
    Yin J; Straight PD; McLoughlin SM; Zhou Z; Lin AJ; Golan DE; Kelleher NL; Kolter R; Walsh CT
    Proc Natl Acad Sci U S A; 2005 Nov; 102(44):15815-20. PubMed ID: 16236721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct site-selective covalent protein immobilization catalyzed by a phosphopantetheinyl transferase.
    Wong LS; Thirlway J; Micklefield J
    J Am Chem Soc; 2008 Sep; 130(37):12456-64. PubMed ID: 18722432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of the surfactin synthetase-activating enzyme sfp: a prototype of the 4'-phosphopantetheinyl transferase superfamily.
    Reuter K; Mofid MR; Marahiel MA; Ficner R
    EMBO J; 1999 Dec; 18(23):6823-31. PubMed ID: 10581256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site-specific protein labeling by Sfp phosphopantetheinyl transferase.
    Yin J; Lin AJ; Golan DE; Walsh CT
    Nat Protoc; 2006; 1(1):280-5. PubMed ID: 17406245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-based mutational analysis of the 4'-phosphopantetheinyl transferases Sfp from Bacillus subtilis: carrier protein recognition and reaction mechanism.
    Mofid MR; Finking R; Essen LO; Marahiel MA
    Biochemistry; 2004 Apr; 43(14):4128-36. PubMed ID: 15065855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A strategy to discover inhibitors of Bacillus subtilis surfactin-type phosphopantetheinyl transferase.
    Yasgar A; Foley TL; Jadhav A; Inglese J; Burkart MD; Simeonov A
    Mol Biosyst; 2010 Feb; 6(2):365-75. PubMed ID: 20094656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescent site-specific labeling of Escherichia coli expressed proteins with Sfp phosphopantetheinyl transferase.
    Zhang A; Sun L; Buswell J; Considine N; Ghosh I; Masharina A; Noren C; Xu MQ
    Methods Mol Biol; 2011; 705():295-307. PubMed ID: 21125394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chapter 10 using phosphopantetheinyl transferases for enzyme posttranslational activation, site specific protein labeling and identification of natural product biosynthetic gene clusters from bacterial genomes.
    Sunbul M; Zhang K; Yin J
    Methods Enzymol; 2009; 458():255-75. PubMed ID: 19374986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bottom-Up Assembly of TMV-Based Nucleoprotein Architectures on Solid Supports.
    Wege C; Eber FJ
    Methods Mol Biol; 2018; 1776():169-186. PubMed ID: 29869241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assembly of tobacco mosaic virus and TMV-like pseudovirus particles in Escherichia coli.
    Hwang DJ; Roberts IM; Wilson TM
    Arch Virol Suppl; 1994; 9():543-58. PubMed ID: 7518274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA-Directed Assembly of Tobacco Mosaic Virus (TMV)-Like Carriers with Tunable Fractions of Differently Addressable Coat Proteins.
    Eiben S
    Methods Mol Biol; 2018; 1776():35-50. PubMed ID: 29869233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies of coat protein-mediated resistance to tobacco mosaic virus (TMV). II. Challenge by a mutant with altered virion surface does not overcome resistance conferred by TMV coat protein.
    Clark WG; Fitchen J; Nejidat A; Deom CM; Beachy RN
    J Gen Virol; 1995 Oct; 76 ( Pt 10)():2613-7. PubMed ID: 7595367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a Multivalent Subunit Vaccine against Tularemia Using Tobacco Mosaic Virus (TMV) Based Delivery System.
    Banik S; Mansour AA; Suresh RV; Wykoff-Clary S; Malik M; McCormick AA; Bakshi CS
    PLoS One; 2015; 10(6):e0130858. PubMed ID: 26098553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chaperone protein GrpE and the GroEL/GroES complex promote the correct folding of tobacco mosaic virus coat protein for ribonucleocapsid assembly in vivo.
    Hwang DJ; Tumer NE; Wilson TM
    Arch Virol; 1998; 143(11):2203-14. PubMed ID: 9856102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel roles for well-known players: from tobacco mosaic virus pests to enzymatically active assemblies.
    Koch C; Eber FJ; Azucena C; Förste A; Walheim S; Schimmel T; Bittner AM; Jeske H; Gliemann H; Eiben S; Geiger FC; Wege C
    Beilstein J Nanotechnol; 2016; 7():613-29. PubMed ID: 27335751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tobacco mosaic virus (TMV) and potato virus X (PVX) coat proteins confer heterologous interference to PVX and TMV infection, respectively.
    Bazzini AA; Asurmendi S; Hopp HE; Beachy RN
    J Gen Virol; 2006 Apr; 87(Pt 4):1005-1012. PubMed ID: 16528051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The symptom difference induced by tobacco mosaic virus and tomato mosaic virus in tobacco plants containing the N gene is determined by movement protein gene.
    Yu C; Hu D; Dong J; Cui X; Wu J; Yu J; Zhou X
    Sci China C Life Sci; 2004 Dec; 47(6):503-9. PubMed ID: 15620106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation of Tobacco Mosaic Virus-Binding Peptides for Biotechnology Applications.
    Chan SK; Steinmetz NF
    Chembiochem; 2022 Jun; 23(11):e202200040. PubMed ID: 35320626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.