These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 36473343)
1. Utilize a few features to classify presynaptic and postsynaptic neurotoxins. Wan H; Liu Q; Ju Y Comput Biol Med; 2023 Jan; 152():106380. PubMed ID: 36473343 [TBL] [Abstract][Full Text] [Related]
2. Analysis and prediction of presynaptic and postsynaptic neurotoxins by Chou's general pseudo amino acid composition and motif features. Mei J; Zhao J J Theor Biol; 2018 Jun; 447():147-153. PubMed ID: 29596863 [TBL] [Abstract][Full Text] [Related]
3. Pippin: A random forest-based method for identifying presynaptic and postsynaptic neurotoxins. Li P; Zhang H; Zhao X; Jia C; Li F; Song J J Bioinform Comput Biol; 2020 Apr; 18(2):2050008. PubMed ID: 32372714 [TBL] [Abstract][Full Text] [Related]
4. Prediction of presynaptic and postsynaptic neurotoxins by combining various Chou's pseudo components. Huo H; Li T; Wang S; Lv Y; Zuo Y; Yang L Sci Rep; 2017 Jul; 7(1):5827. PubMed ID: 28724993 [TBL] [Abstract][Full Text] [Related]
5. Prediction of presynaptic and postsynaptic neurotoxins based on feature extraction. Zhu W; Guo Y; Zou Q Math Biosci Eng; 2021 Jun; 18(5):5943-5958. PubMed ID: 34517517 [TBL] [Abstract][Full Text] [Related]
6. Predicting Presynaptic and Postsynaptic Neurotoxins by Developing Feature Selection Technique. Tang H; Yang Y; Zhang C; Chen R; Huang P; Duan C; Zou P Biomed Res Int; 2017; 2017():3267325. PubMed ID: 28303250 [TBL] [Abstract][Full Text] [Related]
7. Prediction of presynaptic and postsynaptic neurotoxins by the increment of diversity. Yang L; Li Q Toxicol In Vitro; 2009 Mar; 23(2):346-8. PubMed ID: 19138734 [TBL] [Abstract][Full Text] [Related]
8. Prediction of neurotoxins by support vector machine based on multiple feature vectors. Guang XM; Guo YZ; Wang X; Li ML Interdiscip Sci; 2010 Sep; 2(3):241-6. PubMed ID: 20658336 [TBL] [Abstract][Full Text] [Related]
9. Using Reduced Amino Acid Alphabet and Biological Properties to Analyze and Predict Animal Neurotoxin Protein. Yu Y; Wang S; Wang Y; Cao Y; Yu C; Pan Y; Su D; Lu Q; Zuo Y; Yang L Curr Drug Metab; 2020; 21(10):810-817. PubMed ID: 32433000 [TBL] [Abstract][Full Text] [Related]
10. Label-Free (XIC) Quantification of Venom Procoagulant and Neurotoxin Expression in Related Australian Elapid Snakes Gives Insight into Venom Toxicity Evolution. Skejic J; Steer DL; Dunstan N; Hodgson WC J Proteome Res; 2015 Nov; 14(11):4896-906. PubMed ID: 26486890 [TBL] [Abstract][Full Text] [Related]
11. Structure and function of tetanus and botulinum neurotoxins. Montecucco C; Schiavo G Q Rev Biophys; 1995 Nov; 28(4):423-72. PubMed ID: 8771234 [TBL] [Abstract][Full Text] [Related]
12. Pharmacological characterization of α-elapitoxin-Al2a from the venom of the Australian pygmy copperhead (Austrelaps labialis): an atypical long-chain α-neurotoxin with only weak affinity for α7 nicotinic receptors. Marcon F; Leblanc M; Vetter I; Lewis RJ; Escoubas P; Nicholson GM Biochem Pharmacol; 2012 Sep; 84(6):851-63. PubMed ID: 22771828 [TBL] [Abstract][Full Text] [Related]
13. Studies on the subunit structure of textilotoxin, a potent presynaptic neurotoxin from the venom of the Australian common brown snake (Pseudonaja textilis). 3. The complete amino-acid sequences of all the subunits. Pearson JA; Tyler MI; Retson KV; Howden ME Biochim Biophys Acta; 1993 Feb; 1161(2-3):223-9. PubMed ID: 8431471 [TBL] [Abstract][Full Text] [Related]
14. Comparison of sea snake (Hydrophiidae) neurotoxin to cobra (Naja) neurotoxin. Komori Y; Nagamizu M; Uchiya K; Nikai T; Tu AT Toxins (Basel); 2009 Dec; 1(2):151-61. PubMed ID: 22069537 [TBL] [Abstract][Full Text] [Related]
15. Isolation and pharmacological characterization of α-Elapitoxin-Na1a, a novel short-chain postsynaptic neurotoxin from the venom of the Chinese Cobra (Naja atra). Liang Q; Huynh TM; Isbister GK; Hodgson WC Biochem Pharmacol; 2020 Nov; 181():114059. PubMed ID: 32473162 [TBL] [Abstract][Full Text] [Related]
16. The amino acid sequences of two postsynaptic neurotoxins isolated from Malayan cobra (Naja naja sputatrix) venom. Chung MC; Tan NH; Armugam A Toxicon; 1994 Nov; 32(11):1471-4. PubMed ID: 7886703 [TBL] [Abstract][Full Text] [Related]
17. A Distinct Functional Site in Ω-Neurotoxins: Novel Antagonists of Nicotinic Acetylcholine Receptors from Snake Venom. Hassan-Puttaswamy V; Adams DJ; Kini RM ACS Chem Biol; 2015 Dec; 10(12):2805-15. PubMed ID: 26448325 [TBL] [Abstract][Full Text] [Related]
18. Isolation and characterization of α-elapitoxin-Bf1b, a postsynaptic neurotoxin from Malaysian Bungarus fasciatus venom. Rusmili MR; Tee TY; Mustafa MR; Othman I; Hodgson WC Biochem Pharmacol; 2014 Mar; 88(2):229-36. PubMed ID: 24440452 [TBL] [Abstract][Full Text] [Related]
19. Isolation and Pharmacological Characterization of α-Elapitoxin-Ot1a, a Short-Chain Postsynaptic Neurotoxin from the Venom of the Western Desert Taipan, Oxyuranus temporalis. Barber CM; Rusmili MR; Hodgson WC Toxins (Basel); 2016 Feb; 8(3):. PubMed ID: 26938558 [TBL] [Abstract][Full Text] [Related]
20. Characterization and cloning of long neurotoxin homolog from Naja naja atra. Lin SR; Huang HB; Wu BN; Chang LS Biochem Mol Biol Int; 1998 Dec; 46(6):1211-7. PubMed ID: 9891854 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]