These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 36473641)

  • 1. Application of gas chromatographic data and 2D molecular descriptors for accurate global mobility potential prediction.
    Studziński W; Przybyłek M; Gackowska A
    Environ Pollut; 2023 Jan; 317():120816. PubMed ID: 36473641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application 2D Descriptors and Artificial Neural Networks for Beta-Glucosidase Inhibitors Screening.
    Przybyłek M
    Molecules; 2020 Dec; 25(24):. PubMed ID: 33333961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of fast molecular descriptors and artificial neural networks approach in organochlorine compounds electron ionization mass spectra classification.
    Przybyłek M; Studziński W; Gackowska A; Gaca J
    Environ Sci Pollut Res Int; 2019 Sep; 26(27):28188-28201. PubMed ID: 31363975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cross-column prediction of gas-chromatographic retention of polychlorinated biphenyls by artificial neural networks.
    D'Archivio AA; Incani A; Ruggieri F
    J Chromatogr A; 2011 Dec; 1218(48):8679-90. PubMed ID: 22000780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A deep convolutional neural network for the estimation of gas chromatographic retention indices.
    Matyushin DD; Sholokhova AY; Buryak AK
    J Chromatogr A; 2019 Dec; 1607():460395. PubMed ID: 31405570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cross-column prediction of gas-chromatographic retention of polybrominated diphenyl ethers.
    D'Archivio AA; Giannitto A; Maggi MA
    J Chromatogr A; 2013 Jul; 1298():118-31. PubMed ID: 23726355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-step multivariate adaptive regression splines for modeling a quantitative relationship between gas chromatography retention indices and molecular descriptors.
    Xu QS; Massart DL; Liang YZ; Fang KT
    J Chromatogr A; 2003 May; 998(1-2):155-67. PubMed ID: 12862381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic programming based quantitative structure-retention relationships for the prediction of Kovats retention indices.
    Goel P; Bapat S; Vyas R; Tambe A; Tambe SS
    J Chromatogr A; 2015 Nov; 1420():98-109. PubMed ID: 26460075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Halogenated persistent organic pollutants and polycyclic aromatic hydrocarbons in food.
    Cajka T; Hajslova J
    Methods Mol Biol; 2011; 747():373-410. PubMed ID: 21643916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of descriptors for polycyclic aromatic hydrocarbons and related compounds by chromatographic methods and liquid-liquid partition in totally organic biphasic systems.
    Ariyasena TC; Poole CF
    J Chromatogr A; 2014 Sep; 1361():240-54. PubMed ID: 25169725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of self-training artificial neural networks in modeling of gas chromatographic relative retention times of a variety of organic compounds.
    Jalali-Heravi M; Garkani-Nejad Z
    J Chromatogr A; 2002 Feb; 945(1-2):173-84. PubMed ID: 11860134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transfer of gas chromatographic retention data among poly(siloxane) columns by quantitative structure-retention relationships based on molecular descriptors of both solutes and stationary phases.
    Biancolillo A; D'Archivio AA
    J Chromatogr A; 2022 Jan; 1663():462758. PubMed ID: 34954535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Persistent organic pollutants (POPs) - QSPR classification models by means of Machine learning strategies.
    Vakarelska E; Nedyalkova M; Vasighi M; Simeonov V
    Chemosphere; 2022 Jan; 287(Pt 2):132189. PubMed ID: 34826905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of capillary gas chromatographic retention times of fatty acid methyl esters in human blood using MLR, PLS and back-propagation artificial neural networks.
    Gupta VK; Khani H; Ahmadi-Roudi B; Mirakhorli S; Fereyduni E; Agarwal S
    Talanta; 2011 Jan; 83(3):1014-22. PubMed ID: 21147352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of multiple linear regression, partial least squares and artificial neural networks for prediction of gas chromatographic relative retention times of trimethylsilylated anabolic androgenic steroids.
    Fragkaki AG; Farmaki E; Thomaidis N; Tsantili-Kakoulidou A; Angelis YS; Koupparis M; Georgakopoulos C
    J Chromatogr A; 2012 Sep; 1256():232-9. PubMed ID: 22901297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of chemical carcinogenicity by machine learning approaches.
    Tan NX; Rao HB; Li ZR; Li XY
    SAR QSAR Environ Res; 2009; 20(1-2):27-75. PubMed ID: 19343583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cross-column prediction of gas-chromatographic retention indices of saturated esters.
    D'Archivio AA; Maggi MA; Ruggieri F
    J Chromatogr A; 2014 Aug; 1355():269-77. PubMed ID: 24939086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retention modelling of polychlorinated biphenyls in comprehensive two-dimensional gas chromatography.
    D'Archivio AA; Incani A; Ruggieri F
    Anal Bioanal Chem; 2011 Jan; 399(2):903-13. PubMed ID: 20972553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of gas chromatographic retention indices of some amino acids and carboxylic acids from their structural descriptors.
    Fatemi MH; Elyasi M
    J Sep Sci; 2011 Nov; 34(22):3216-20. PubMed ID: 22012944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. QSPR study on GC relative retention time of organic pesticides on different chromatographic columns.
    Hu R; Yin C; Wang Y; Lu C; Ge T
    J Sep Sci; 2008 Jul; 31(13):2434-43. PubMed ID: 18646271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.