These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 36473647)

  • 1. Single-timepoint low-dimensional characterization and classification of acute versus chronic multiple sclerosis lesions using machine learning.
    Caba B; Cafaro A; Lombard A; Arnold DL; Elliott C; Liu D; Jiang X; Gafson A; Fisher E; Belachew SM; Paragios N
    Neuroimage; 2023 Jan; 265():119787. PubMed ID: 36473647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. QSMRim-Net: Imbalance-aware learning for identification of chronic active multiple sclerosis lesions on quantitative susceptibility maps.
    Zhang H; Nguyen TD; Zhang J; Marcille M; Spincemaille P; Wang Y; Gauthier SA; Sweeney EM
    Neuroimage Clin; 2022; 34():102979. PubMed ID: 35247730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fully convolutional neural network for new T2-w lesion detection in multiple sclerosis.
    Salem M; Valverde S; Cabezas M; Pareto D; Oliver A; Salvi J; Rovira À; Lladó X
    Neuroimage Clin; 2020; 25():102149. PubMed ID: 31918065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Limited One-time Sampling Irregularity Map (LOTS-IM) for Automatic Unsupervised Assessment of White Matter Hyperintensities and Multiple Sclerosis Lesions in Structural Brain Magnetic Resonance Images.
    Rachmadi MF; Valdés-Hernández MDC; Li H; Guerrero R; Meijboom R; Wiseman S; Waldman A; Zhang J; Rueckert D; Wardlaw J; Komura T
    Comput Med Imaging Graph; 2020 Jan; 79():101685. PubMed ID: 31846826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of unenhanced lesion evolution in multiple sclerosis using radiomics-based models: a machine learning approach.
    Peng Y; Zheng Y; Tan Z; Liu J; Xiang Y; Liu H; Dai L; Xie Y; Wang J; Zeng C; Li Y
    Mult Scler Relat Disord; 2021 Aug; 53():102989. PubMed ID: 34052741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-lesion radiomics model for discrimination of relapsing-remitting multiple sclerosis and neuropsychiatric systemic lupus erythematosus.
    Luo X; Piao S; Li H; Li Y; Xia W; Bao Y; Liu X; Geng D; Wu H; Yang L
    Eur Radiol; 2022 Aug; 32(8):5700-5710. PubMed ID: 35243524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Texture analysis in brain T2 and diffusion MRI differentiates histology-verified grey and white matter pathology types in multiple sclerosis.
    Hosseinpour Z; Jonkman L; Oladosu O; Pridham G; Pike GB; Inglese M; Geurts JJ; Zhang Y
    J Neurosci Methods; 2022 Sep; 379():109671. PubMed ID: 35820450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep learning of joint myelin and T1w MRI features in normal-appearing brain tissue to distinguish between multiple sclerosis patients and healthy controls.
    Yoo Y; Tang LYW; Brosch T; Li DKB; Kolind S; Vavasour I; Rauscher A; MacKay AL; Traboulsee A; Tam RC
    Neuroimage Clin; 2018; 17():169-178. PubMed ID: 29071211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving automated multiple sclerosis lesion segmentation with a cascaded 3D convolutional neural network approach.
    Valverde S; Cabezas M; Roura E; González-Villà S; Pareto D; Vilanova JC; Ramió-Torrentà L; Rovira À; Oliver A; Lladó X
    Neuroimage; 2017 Jul; 155():159-168. PubMed ID: 28435096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison between gadolinium-enhanced 2D T1-weighted gradient-echo and spin-echo sequences in the detection of active multiple sclerosis lesions on 3.0T MRI.
    Aymerich FX; Auger C; Alcaide-Leon P; Pareto D; Huerga E; Corral JF; Mitjana R; Sastre-Garriga J; Montalban X; Rovira A
    Eur Radiol; 2017 Apr; 27(4):1361-1368. PubMed ID: 27456965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep 3D Convolutional Encoder Networks With Shortcuts for Multiscale Feature Integration Applied to Multiple Sclerosis Lesion Segmentation.
    Brosch T; Tang LY; Youngjin Yoo ; Li DK; Traboulsee A; Tam R
    IEEE Trans Med Imaging; 2016 May; 35(5):1229-1239. PubMed ID: 26886978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep Learning for Predicting Enhancing Lesions in Multiple Sclerosis from Noncontrast MRI.
    Narayana PA; Coronado I; Sujit SJ; Wolinsky JS; Lublin FD; Gabr RE
    Radiology; 2020 Feb; 294(2):398-404. PubMed ID: 31845845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SVM recursive feature elimination analyses of structural brain MRI predicts near-term relapses in patients with clinically isolated syndromes suggestive of multiple sclerosis.
    Wottschel V; Chard DT; Enzinger C; Filippi M; Frederiksen JL; Gasperini C; Giorgio A; Rocca MA; Rovira A; De Stefano N; Tintoré M; Alexander DC; Barkhof F; Ciccarelli O;
    Neuroimage Clin; 2019; 24():102011. PubMed ID: 31734524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep learning-based PET/MR radiomics for the classification of annualized relapse rate in multiple sclerosis.
    Du S; Yuan C; Zhou Q; Huang X; Meng H; Chen M; Wang H; Huang Q; Xiang S; Qian D; Li B; Chen S; Zhang M
    Mult Scler Relat Disord; 2023 Jul; 75():104750. PubMed ID: 37196386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of Multiple Sclerosis lesion age on magnetic resonance imaging.
    Sweeney EM; Nguyen TD; Kuceyeski A; Ryan SM; Zhang S; Zexter L; Wang Y; Gauthier SA
    Neuroimage; 2021 Jan; 225():117451. PubMed ID: 33069865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting conversion from clinically isolated syndrome to multiple sclerosis-An imaging-based machine learning approach.
    Zhang H; Alberts E; Pongratz V; Mühlau M; Zimmer C; Wiestler B; Eichinger P
    Neuroimage Clin; 2019; 21():101593. PubMed ID: 30502078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple Sclerosis Lesion Analysis in Brain Magnetic Resonance Images: Techniques and Clinical Applications.
    Ma Y; Zhang C; Cabezas M; Song Y; Tang Z; Liu D; Cai W; Barnett M; Wang C
    IEEE J Biomed Health Inform; 2022 Jun; 26(6):2680-2692. PubMed ID: 35171783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic segmentation of white matter hyperintensities: validation and comparison with state-of-the-art methods on both Multiple Sclerosis and elderly subjects.
    Tran P; Thoprakarn U; Gourieux E; Dos Santos CL; Cavedo E; Guizard N; Cotton F; Krolak-Salmon P; Delmaire C; Heidelberg D; Pyatigorskaya N; Ströer S; Dormont D; Martini JB; Chupin M;
    Neuroimage Clin; 2022; 33():102940. PubMed ID: 35051744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved particle swarm optimized deep convolutional neural network with super-pixel clustering for multiple sclerosis lesion segmentation in brain MRI imaging.
    Krishna Priya R; Chacko S
    Int J Numer Method Biomed Eng; 2021 Sep; 37(9):e3506. PubMed ID: 34181310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Classification of pulmonary lesion based on multiparametric MRI: utility of radiomics and comparison of machine learning methods.
    Wang X; Wan Q; Chen H; Li Y; Li X
    Eur Radiol; 2020 Aug; 30(8):4595-4605. PubMed ID: 32222795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.