These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 36473653)

  • 1. Quantitative multi-species toxicity modeling: Does a multi-species, machine learning model provide better performance than a single-species model for the evaluation of acute aquatic toxicity by organic pollutants?
    Gajewicz-Skretna A; Wyrzykowska E; Gromelski M
    Sci Total Environ; 2023 Feb; 861():160590. PubMed ID: 36473653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New Models to Predict the Acute and Chronic Toxicities of Representative Species of the Main Trophic Levels of Aquatic Environments.
    Toma C; Cappelli CI; Manganaro A; Lombardo A; Arning J; Benfenati E
    Molecules; 2021 Nov; 26(22):. PubMed ID: 34834075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ecotoxicological characterisation and classification of existing chemicals. Examples from the ICCA HPV initiative and comparison with other existing chemicals.
    Licht O; Weyers A; Nagel R
    Environ Sci Pollut Res Int; 2004; 11(5):291-6. PubMed ID: 15506630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acute toxicity of polychlorinated diphenyl ethers (PCDEs) in three model aquatic organisms (Scenedesmus obliquus, Daphnia magna, and Danio rerio) of different trophic levels.
    Yang W; Huang X; Wu Q; Shi J; Zhang X; Ouyang L; Crump D; Zhang X; Zhang R
    Sci Total Environ; 2022 Jan; 805():150366. PubMed ID: 34818752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hazard of pharmaceuticals for aquatic environment: Prioritization by structural approaches and prediction of ecotoxicity.
    Sangion A; Gramatica P
    Environ Int; 2016 Oct; 95():131-43. PubMed ID: 27568576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generating accurate in silico predictions of acute aquatic toxicity for a range of organic chemicals: Towards similarity-based machine learning methods.
    Gajewicz-Skretna A; Furuhama A; Yamamoto H; Suzuki N
    Chemosphere; 2021 Oct; 280():130681. PubMed ID: 34162070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Environmental properties and aquatic hazard assessment of anionic surfactants: physico-chemical, environmental fate and ecotoxicity properties.
    Könnecker G; Regelmann J; Belanger S; Gamon K; Sedlak R
    Ecotoxicol Environ Saf; 2011 Sep; 74(6):1445-60. PubMed ID: 21550112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting the acute ecotoxicity of chemical substances by machine learning using graph theory.
    Takata M; Lin BL; Xue M; Zushi Y; Terada A; Hosomi M
    Chemosphere; 2020 Jan; 238():124604. PubMed ID: 31450113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Whole effluent assessment of industrial wastewater for determination of BAT compliance. Part 2: metal surface treatment industry.
    Gartiser S; Hafner C; Hercher C; Kronenberger-Schäfer K; Paschke A
    Environ Sci Pollut Res Int; 2010 Jun; 17(5):1149-57. PubMed ID: 20127188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and regulation of ecotoxicity of polychlorinated naphthalenes to aquatic food Chain (green algae-Daphnia magna-fish).
    Gu W; Li X; Du M; Ren Z; Li Q; Li Y
    Aquat Toxicol; 2021 Apr; 233():105774. PubMed ID: 33610856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparing in vivo data and in silico predictions for acute effects assessment of biocidal active substances and metabolites for aquatic organisms.
    Blázquez M; Andreu-Sánchez O; Ranero I; Fernández-Cruz ML; Benfenati E
    Ecotoxicol Environ Saf; 2020 Dec; 205():111291. PubMed ID: 32956865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multispecies QSAR modeling for predicting the aquatic toxicity of diverse organic chemicals for regulatory toxicology.
    Singh KP; Gupta S; Kumar A; Mohan D
    Chem Res Toxicol; 2014 May; 27(5):741-53. PubMed ID: 24738471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of surface water quality using an ecotoxicological approach: a case study of the Alqueva Reservoir (Portugal).
    Palma P; Alvarenga P; Palma V; Matos C; Fernandes RM; Soares A; Barbosa IR
    Environ Sci Pollut Res Int; 2010 Mar; 17(3):703-16. PubMed ID: 19396484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of toxic mechanisms and mode of action to three different levels of species for 14 antibiotics based on interspecies correlation, excess toxicity, and QSAR.
    Li JJ; Yue YX; Jiang JF; Shi SJ; Wu HX; Zhao YH; Che FF
    Chemosphere; 2023 Mar; 317():137795. PubMed ID: 36632953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Consensus QSAR modeling of toxicity of pharmaceuticals to different aquatic organisms: Ranking and prioritization of the DrugBank database compounds.
    Khan K; Benfenati E; Roy K
    Ecotoxicol Environ Saf; 2019 Jan; 168():287-297. PubMed ID: 30390527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bio-QSARs 2.0: Unlocking a new level of predictive power for machine learning-based ecotoxicity predictions by exploiting chemical and biological information.
    Zubrod JP; Galic N; Vaugeois M; Dreier DA
    Environ Int; 2024 Apr; 186():108607. PubMed ID: 38593686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Consensus QSAR models estimating acute toxicity to aquatic organisms from different trophic levels: algae,
    Lunghini F; Marcou G; Azam P; Enrici MH; Van Miert E; Varnek A
    SAR QSAR Environ Res; 2020 Sep; 31(9):655-675. PubMed ID: 32799684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toxicity of dodecylbenzene to algae, crustacean, and fish - Passive dosing of highly hydrophobic liquids at the solubility limit.
    Stibany F; Schmidt SN; Mayer P; Schäffer A
    Chemosphere; 2020 Jul; 251():126396. PubMed ID: 32163782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. QSAR models for biocides: The example of the prediction of
    Marzo M; Lavado GJ; Como F; Toropova AP; Toropov AA; Baderna D; Cappelli C; Lombardo A; Toma C; Blázquez M; Benfenati E
    SAR QSAR Environ Res; 2020 Mar; 31(3):227-243. PubMed ID: 31941347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemometric modeling of aquatic toxicity of contaminants of emerging concern (CECs) in Dugesia japonica and its interspecies correlation with daphnia and fish: QSTR and QSTTR approaches.
    Hossain KA; Roy K
    Ecotoxicol Environ Saf; 2018 Dec; 166():92-101. PubMed ID: 30253287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.