These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 36474260)

  • 1. Artificial genetic polymers against human pathologies.
    Ivanov GS; Tribulovich VG; Pestov NB; David TI; Amoah AS; Korneenko TV; Barlev NA
    Biol Direct; 2022 Dec; 17(1):39. PubMed ID: 36474260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peptide nucleic acid (PNA) and its applications in chemical biology, diagnostics, and therapeutics.
    Saarbach J; Sabale PM; Winssinger N
    Curr Opin Chem Biol; 2019 Oct; 52():112-124. PubMed ID: 31541865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Versatility of peptide nucleic acids (PNAs): role in chemical biology, drug discovery, and origins of life.
    Sharma C; Awasthi SK
    Chem Biol Drug Des; 2017 Jan; 89(1):16-37. PubMed ID: 27490868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Re-Engineering RNA Molecules into Therapeutic Agents.
    Egli M; Manoharan M
    Acc Chem Res; 2019 Apr; 52(4):1036-1047. PubMed ID: 30912917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scaffolding along nucleic acid duplexes using 2'-amino-locked nucleic acids.
    Astakhova IK; Wengel J
    Acc Chem Res; 2014 Jun; 47(6):1768-77. PubMed ID: 24749544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An overview of latest advances in exploring bioactive peptide hydrogels for neural tissue engineering.
    Sharma P; Pal VK; Roy S
    Biomater Sci; 2021 Jun; 9(11):3911-3938. PubMed ID: 33973582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The structural diversity of artificial genetic polymers.
    Anosova I; Kowal EA; Dunn MR; Chaput JC; Van Horn WD; Egli M
    Nucleic Acids Res; 2016 Feb; 44(3):1007-21. PubMed ID: 26673703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymers Strive for Accuracy: From Sequence-Defined Polymers to mRNA Vaccines against COVID-19 and Polymers in Nucleic Acid Therapeutics.
    Ishaqat A; Herrmann A
    J Am Chem Soc; 2021 Dec; 143(49):20529-20545. PubMed ID: 34841867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design principles, synthesis and biomedical applications of polymer vesicles with inhomogeneous membranes.
    Liu D; Sun H; Xiao Y; Chen S; Cornel EJ; Zhu Y; Du J
    J Control Release; 2020 Oct; 326():365-386. PubMed ID: 32682902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extension of the PNA world by functionalized PNA monomers eligible candidates for inverse Diels Alder Click Chemistry.
    Wiessler M; Waldeck W; Pipkorn R; Kliem C; Lorenz P; Fleischhacker H; Hafner M; Braun K
    Int J Med Sci; 2010 Jun; 7(4):213-23. PubMed ID: 20617125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances in the use of MOFs for Cancer Diagnosis and Treatment: An Overview.
    Abuçafy MP; da Silva BL; Oshiro-Junior JA; Manaia EB; Chiari-Andréo BG; Armando RAM; Frem RCG; Chiavacci LA
    Curr Pharm Des; 2020; 26(33):4174-4184. PubMed ID: 32250216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipid and polymeric carrier-mediated nucleic acid delivery.
    Zhu L; Mahato RI
    Expert Opin Drug Deliv; 2010 Oct; 7(10):1209-26. PubMed ID: 20836625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overcoming Pharmaceutical Bottlenecks for Nucleic Acid Drug Development.
    Lu M; Xing H; Zheng A; Huang Y; Liang XJ
    Acc Chem Res; 2023 Feb; 56(3):224-236. PubMed ID: 36624086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Delivery of nucleic acids using nanomaterials.
    Qin Y; Ou L; Zha L; Zeng Y; Li L
    Mol Biomed; 2023 Dec; 4(1):48. PubMed ID: 38092998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cationic polymer based nanocarriers for delivery of therapeutic nucleic acids.
    Nimesh S; Gupta N; Chandra R
    J Biomed Nanotechnol; 2011 Aug; 7(4):504-20. PubMed ID: 21870455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nano-vectors for the Ocular Delivery of Nucleic Acid-based Therapeutics.
    Khar RK; Jain GK; Warsi MH; Mallick N; Akhter S; Pathan SA; Ahmad FJ
    Indian J Pharm Sci; 2010 Nov; 72(6):675-88. PubMed ID: 21969738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of conventional anti-cancer drugs as new tools against multidrug resistant tumors.
    Dallavalle S; Dobričić V; Lazzarato L; Gazzano E; Machuqueiro M; Pajeva I; Tsakovska I; Zidar N; Fruttero R
    Drug Resist Updat; 2020 May; 50():100682. PubMed ID: 32087558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting unimolecular G-quadruplex nucleic acids: a new paradigm for the drug discovery?
    Parrotta L; Ortuso F; Moraca F; Rocca R; Costa G; Alcaro S; Artese A
    Expert Opin Drug Discov; 2014 Oct; 9(10):1167-87. PubMed ID: 25109710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stability and mechanism of threose nucleic acid toward acid-mediated degradation.
    Lee EM; Setterholm NA; Hajjar M; Barpuzary B; Chaput JC
    Nucleic Acids Res; 2023 Oct; 51(18):9542-9551. PubMed ID: 37650628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accelerating the Translation of Nanomaterials in Biomedicine.
    Mitragotri S; Anderson DG; Chen X; Chow EK; Ho D; Kabanov AV; Karp JM; Kataoka K; Mirkin CA; Petrosko SH; Shi J; Stevens MM; Sun S; Teoh S; Venkatraman SS; Xia Y; Wang S; Gu Z; Xu C
    ACS Nano; 2015 Jul; 9(7):6644-54. PubMed ID: 26115196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.