These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 36474465)

  • 1. Genipin does not reduce the initiation or propagation of microcracks in collagen networks of cartilage.
    Santos S; Neu CP; Grady JJ; Pierce DM
    Osteoarthr Cartil Open; 2022 Mar; 4(1):100233. PubMed ID: 36474465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Propagation of microcracks in collagen networks of cartilage under mechanical loads.
    Santos S; Emery N; Neu CP; Pierce DM
    Osteoarthritis Cartilage; 2019 Sep; 27(9):1392-1402. PubMed ID: 31121292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microdamage propagation in trabecular bone due to changes in loading mode.
    Wang X; Niebur GL
    J Biomech; 2006; 39(5):781-90. PubMed ID: 16488217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genipin crosslinking of cartilage enhances resistance to biochemical degradation and mechanical wear.
    McGann ME; Bonitsky CM; Jackson ML; Ovaert TC; Trippel SB; Wagner DR
    J Orthop Res; 2015 Nov; 33(11):1571-1579. PubMed ID: 25939430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Axial-shear interaction effects on microdamage in bovine tibial trabecular bone.
    Wang X; Guyette J; Liu X; Roeder RK; Niebur GL
    Eur J Morphol; 2005; 42(1-2):61-70. PubMed ID: 16123025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genipin crosslinking decreases the mechanical wear and biochemical degradation of impacted cartilage in vitro.
    Bonitsky CM; McGann ME; Selep MJ; Ovaert TC; Trippel SB; Wagner DR
    J Orthop Res; 2017 Mar; 35(3):558-565. PubMed ID: 27584857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crack propagation in articular cartilage under cyclic loading using cohesive finite element modeling.
    Orozco GA; Tanska P; Gustafsson A; Korhonen RK; Isaksson H
    J Mech Behav Biomed Mater; 2022 Jul; 131():105227. PubMed ID: 35477071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accumulation of in-vivo fatigue microdamage and its relation to biomechanical properties in ageing human cortical bone.
    Zioupos P
    J Microsc; 2001 Feb; 201(2):270-278. PubMed ID: 11207929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genipin-cross-linked collagen/chitosan biomimetic scaffolds for articular cartilage tissue engineering applications.
    Yan LP; Wang YJ; Ren L; Wu G; Caridade SG; Fan JB; Wang LY; Ji PH; Oliveira JM; Oliveira JT; Mano JF; Reis RL
    J Biomed Mater Res A; 2010 Nov; 95(2):465-75. PubMed ID: 20648541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatiotemporal Distribution of Linear Microcracks and Diffuse Microdamage Following Daily Bouts of Fatigue Loading of Rat Ulnae.
    Liu X; Tang C; Zhang X; Cai J; Yan Z; Xie K; Yang Z; Wang J; Guo XE; Luo E; Jing D
    J Orthop Res; 2019 Oct; 37(10):2112-2121. PubMed ID: 31206769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyclic loading of human articular cartilage: The transition from compaction to fatigue.
    Kaplan JT; Neu CP; Drissi H; Emery NC; Pierce DM
    J Mech Behav Biomed Mater; 2017 Jan; 65():734-742. PubMed ID: 27756049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of bone microstructure on the initiation and growth of microcracks.
    O'Brien FJ; Taylor D; Clive Lee T
    J Orthop Res; 2005 Mar; 23(2):475-80. PubMed ID: 15734265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-energy impact of human cartilage: predictors for microcracking the network of collagen.
    Kaleem B; Maier F; Drissi H; Pierce DM
    Osteoarthritis Cartilage; 2017 Apr; 25(4):544-553. PubMed ID: 27903450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-lapsed assessment of microcrack initiation and propagation in murine cortical bone at submicrometer resolution.
    Voide R; Schneider P; Stauber M; Wyss P; Stampanoni M; Sennhauser U; van Lenthe GH; Müller R
    Bone; 2009 Aug; 45(2):164-73. PubMed ID: 19410668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional confocal images of microdamage in cancellous bone.
    Fazzalari NL; Forwood MR; Manthey BA; Smith K; Kolesik P
    Bone; 1998 Oct; 23(4):373-8. PubMed ID: 9763150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of in vivo fatigue-induced subchondral bone microdamage on the mechanical response of cartilage-bone under a single impact compression.
    Malekipour F; Hitchens PL; Whitton RC; Lee PV
    J Biomech; 2020 Feb; 100():109594. PubMed ID: 31924348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synchrotron radiation micro-CT at the micrometer scale for the analysis of the three-dimensional morphology of microcracks in human trabecular bone.
    Larrue A; Rattner A; Peter ZA; Olivier C; Laroche N; Vico L; Peyrin F
    PLoS One; 2011; 6(7):e21297. PubMed ID: 21750707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accumulation of in-vivo fatigue microdamage and its relation to biomechanical properties in ageing human cortical bone.
    Zioupos P
    J Microsc; 2001 Feb; 201(Pt 2):270-8. PubMed ID: 11430140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New insights into the propagation of fatigue damage in cortical bone using confocal microscopy and chelating fluorochromes.
    Zarrinkalam KH; Kuliwaba JS; Martin RB; Wallwork MA; Fazzalari NL
    Eur J Morphol; 2005; 42(1-2):81-90. PubMed ID: 16123027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genipin cross-linked fibrin hydrogels for in vitro human articular cartilage tissue-engineered regeneration.
    Dare EV; Griffith M; Poitras P; Kaupp JA; Waldman SD; Carlsson DJ; Dervin G; Mayoux C; Hincke MT
    Cells Tissues Organs; 2009; 190(6):313-25. PubMed ID: 19287127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.