These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 36474653)

  • 1. Water-responsive 4D printing based on self-assembly of hydrophobic protein "Zein" for the control of degradation rate and drug release.
    Zhang Y; Raza A; Xue YQ; Yang G; Hayat U; Yu J; Liu C; Wang HJ; Wang JY
    Bioact Mater; 2023 May; 23():343-352. PubMed ID: 36474653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 4D printed tri-segment nerve conduit using zein gel as the ink for repair of rat sciatic nerve large defect.
    Lin Y; Yu J; Zhang Y; Hayat U; Liu C; Huang X; Lin H; Wang JY
    Biomater Adv; 2023 Aug; 151():213473. PubMed ID: 37245344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Four-Dimensional Printed Construct from Temperature-Responsive Self-Folding Feedstock for Pharmaceutical Applications with Machine Learning Modeling.
    Suryavanshi P; Wang J; Duggal I; Maniruzzaman M; Banerjee S
    Pharmaceutics; 2023 Apr; 15(4):. PubMed ID: 37111753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shape Memory Polymer Composites: 4D Printing, Smart Structures, and Applications.
    Yan S; Zhang F; Luo L; Wang L; Liu Y; Leng J
    Research (Wash D C); 2023; 6():0234. PubMed ID: 37941913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Utilizing 4D Printing to Design Smart Gastroretentive, Esophageal, and Intravesical Drug Delivery Systems.
    Mahmoud DB; Schulz-Siegmund M
    Adv Healthc Mater; 2023 Apr; 12(10):e2202631. PubMed ID: 36571721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-assembled zein organogels as in situ forming implant drug delivery system and 3D printing ink.
    Raza A; Hayat U; Zhang X; Wang JY
    Int J Pharm; 2022 Nov; 627():122206. PubMed ID: 36126824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards 4D printing in pharmaceutics.
    Gazzaniga A; Foppoli A; Cerea M; Palugan L; Cirilli M; Moutaharrik S; Melocchi A; Maroni A
    Int J Pharm X; 2023 Dec; 5():100171. PubMed ID: 36876052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel near-infrared light responsive 4D printed nanoarchitecture with dynamically and remotely controllable transformation.
    Cui H; Miao S; Esworthy T; Lee SJ; Zhou X; Hann SY; Webster TJ; Harris BT; Zhang LG
    Nano Res; 2019; 12():1381-1388. PubMed ID: 33312444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microwave-Induced Rapid Shape Change of 4D Printed Vegetable-Based Food.
    Chen X; Zhang M; Tang T
    Foods; 2023 May; 12(11):. PubMed ID: 37297403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The clinical significance of 4D printing.
    Sheikh A; Abourehab MAS; Kesharwani P
    Drug Discov Today; 2023 Jan; 28(1):103391. PubMed ID: 36195204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 4D Printing of Magnetoactive Soft Materials for On-Demand Magnetic Actuation Transformation.
    Zhang Y; Wang Q; Yi S; Lin Z; Wang C; Chen Z; Jiang L
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4174-4184. PubMed ID: 33398983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Programming sequential motion steps in 4D-printed hygromorphs by architected mesostructure and differential hygro-responsiveness.
    Tahouni Y; Krüger F; Poppinga S; Wood D; Pfaff M; Rühe J; Speck T; Menges A
    Bioinspir Biomim; 2021 Jul; 16(5):. PubMed ID: 34144536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 4D Printing of Body Temperature-Responsive Hydrogels Based on Poly(acrylic acid) with Shape-Memory and Self-Healing Abilities.
    Abdullah T; Okay O
    ACS Appl Bio Mater; 2023 Feb; 6(2):703-711. PubMed ID: 36700540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 4D printing and stimuli-responsive materials in biomedical aspects.
    Lui YS; Sow WT; Tan LP; Wu Y; Lai Y; Li H
    Acta Biomater; 2019 Jul; 92():19-36. PubMed ID: 31071476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 4D-printed shape-programmable [H
    Su YT; Chiu HC; Su CK
    Talanta; 2025 Jan; 282():126998. PubMed ID: 39368332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Artificial Intelligence-Empowered 3D and 4D Printing Technologies toward Smarter Biomedical Materials and Approaches.
    Pugliese R; Regondi S
    Polymers (Basel); 2022 Jul; 14(14):. PubMed ID: 35890571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Color-Changeable Four-Dimensional Printing Enabled with Ultraviolet-Curable and Thermochromic Shape Memory Polymers.
    Chen L; Zhang Y; Ye H; Duan G; Duan H; Ge Q; Wang Z
    ACS Appl Mater Interfaces; 2021 Apr; 13(15):18120-18127. PubMed ID: 33830721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fractal-Based Stretchable Circuits via Electric-Field-Driven Microscale 3D Printing for Localized Heating of Shape Memory Polymers in 4D Printing.
    Zhang YF; Li Z; Li H; Li H; Xiong Y; Zhu X; Lan H; Ge Q
    ACS Appl Mater Interfaces; 2021 Sep; 13(35):41414-41423. PubMed ID: 33779155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An insight into biomimetic 4D printing.
    Kanu NJ; Gupta E; Vates UK; Singh GK
    RSC Adv; 2019 Nov; 9(65):38209-38226. PubMed ID: 35541793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Four-Dimensional-Printed Microrobots and Their Applications: A Review.
    Darmawan BA; Park JO; Go G; Choi E
    Micromachines (Basel); 2023 Aug; 14(8):. PubMed ID: 37630143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.