These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 36475440)

  • 1. Musculoskeletal wing-actuation model of hummingbirds predicts diverse effects of primary flight muscles in hovering flight.
    Agrawal S; Tobalske BW; Anwar Z; Luo H; Hedrick TL; Cheng B
    Proc Biol Sci; 2022 Dec; 289(1988):20222076. PubMed ID: 36475440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wing-pitching mechanism of hovering Ruby-throated hummingbirds.
    Song J; Luo H; Hedrick TL
    Bioinspir Biomim; 2015 Jan; 10(1):016007. PubMed ID: 25599381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How oscillating aerodynamic forces explain the timbre of the hummingbird's hum and other animals in flapping flight.
    Hightower BJ; Wijnings PW; Scholte R; Ingersoll R; Chin DD; Nguyen J; Shorr D; Lentink D
    Elife; 2021 Mar; 10():. PubMed ID: 33724182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How the hummingbird wingbeat is tuned for efficient hovering.
    Ingersoll R; Lentink D
    J Exp Biol; 2018 Oct; 221(Pt 20):. PubMed ID: 30323114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuromuscular control of hovering wingbeat kinematics in response to distinct flight challenges in the ruby-throated hummingbird, Archilochus colubris.
    Mahalingam S; Welch KC
    J Exp Biol; 2013 Nov; 216(Pt 22):4161-71. PubMed ID: 23948477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Very low force-generating ability and unusually high temperature dependency in hummingbird flight muscle fibers.
    Reiser PJ; Welch KC; Suarez RK; Altshuler DL
    J Exp Biol; 2013 Jun; 216(Pt 12):2247-56. PubMed ID: 23580719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of avian flight: muscles and constraints on performance.
    Tobalske BW
    Philos Trans R Soc Lond B Biol Sci; 2016 Sep; 371(1704):. PubMed ID: 27528773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Active wing-pitching mechanism in hummingbird escape maneuvers.
    Nasirul Haque M; Cheng B; Tobalske BW; Luo H
    Bioinspir Biomim; 2023 Aug; 18(5):. PubMed ID: 37567187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hovering and intermittent flight in birds.
    Tobalske BW
    Bioinspir Biomim; 2010 Dec; 5(4):045004. PubMed ID: 21098953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hovering hummingbird wing aerodynamics during the annual cycle. I. Complete wing.
    Achache Y; Sapir N; Elimelech Y
    R Soc Open Sci; 2017 Aug; 4(8):170183. PubMed ID: 28878971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Outperforming hummingbirds' load-lifting capability with a lightweight hummingbird-like flapping-wing mechanism.
    Leys F; Reynaerts D; Vandepitte D
    Biol Open; 2016 Aug; 5(8):1052-60. PubMed ID: 27444790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aspect Ratio Effects on the Aerodynamic Performance of a Biomimetic Hummingbird Wing in Flapping.
    Min Y; Zhao G; Pan D; Shao X
    Biomimetics (Basel); 2023 May; 8(2):. PubMed ID: 37366811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An at-scale tailless flapping wing hummingbird robot: II. Flight control in hovering and trajectory tracking.
    Fei F; Tu Z; Deng X
    Bioinspir Biomim; 2023 Jan; 18(2):. PubMed ID: 36595240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal pitching axis location of flapping wings for efficient hovering flight.
    Wang Q; Goosen JFL; van Keulen F
    Bioinspir Biomim; 2017 Sep; 12(5):056001. PubMed ID: 28632144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flight mechanics and control of escape manoeuvres in hummingbirds. I. Flight kinematics.
    Cheng B; Tobalske BW; Powers DR; Hedrick TL; Wethington SM; Chiu GT; Deng X
    J Exp Biol; 2016 Nov; 219(Pt 22):3518-3531. PubMed ID: 27595850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The dynamics of hovering flight in hummingbirds, insects and bats with implications for aerial robotics.
    Vejdani HR; Boerma DB; Swartz SM; Breuer KS
    Bioinspir Biomim; 2018 Nov; 14(1):016003. PubMed ID: 30411710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Muscle activation patterns and motor anatomy of Anna's hummingbirds Calypte anna and zebra finches Taeniopygia guttata.
    Donovan ER; Keeney BK; Kung E; Makan S; Wild JM; Altshuler DL
    Physiol Biochem Zool; 2013; 86(1):27-46. PubMed ID: 23303319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hovering hummingbird wing aerodynamics during the annual cycle. II. Implications of wing feather moult.
    Achache Y; Sapir N; Elimelech Y
    R Soc Open Sci; 2018 Feb; 5(2):171766. PubMed ID: 29515884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Muscle function in avian flight: achieving power and control.
    Biewener AA
    Philos Trans R Soc Lond B Biol Sci; 2011 May; 366(1570):1496-506. PubMed ID: 21502121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenomenology and scaling of optimal flapping wing kinematics.
    Gehrke A; Mulleners K
    Bioinspir Biomim; 2021 Jan; 16(2):. PubMed ID: 33264765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.