BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 36475770)

  • 1. Structural Features and Nonlinear Rheology of Self-Assembled Networks of Cross-Linked Semiflexible Polymers.
    Syed S; MacKintosh FC; Shivers JL
    J Phys Chem B; 2022 Dec; 126(50):10741-10749. PubMed ID: 36475770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear elasticity of stiff filament networks: strain stiffening, negative normal stress, and filament alignment in fibrin gels.
    Kang H; Wen Q; Janmey PA; Tang JX; Conti E; MacKintosh FC
    J Phys Chem B; 2009 Mar; 113(12):3799-805. PubMed ID: 19243107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scaling of F-actin network rheology to probe single filament elasticity and dynamics.
    Gardel ML; Shin JH; MacKintosh FC; Mahadevan L; Matsudaira PA; Weitz DA
    Phys Rev Lett; 2004 Oct; 93(18):188102. PubMed ID: 15525211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulations of dynamically cross-linked actin networks: Morphology, rheology, and hydrodynamic interactions.
    Maxian O; Peláez RP; Mogilner A; Donev A
    PLoS Comput Biol; 2021 Dec; 17(12):e1009240. PubMed ID: 34871298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visualizing the strain field in semiflexible polymer networks: strain fluctuations and nonlinear rheology of F-actin gels.
    Liu J; Koenderink GH; Kasza KE; Mackintosh FC; Weitz DA
    Phys Rev Lett; 2007 May; 98(19):198304. PubMed ID: 17677669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-scale strain-stiffening of semiflexible bundle networks.
    Piechocka IK; Jansen KA; Broedersz CP; Kurniawan NA; MacKintosh FC; Koenderink GH
    Soft Matter; 2016 Feb; 12(7):2145-56. PubMed ID: 26761718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micro- and macrorheological properties of isotropically cross-linked actin networks.
    Luan Y; Lieleg O; Wagner B; Bausch AR
    Biophys J; 2008 Jan; 94(2):688-93. PubMed ID: 17872953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emergence of tissue-like mechanics from fibrous networks confined by close-packed cells.
    van Oosten ASG; Chen X; Chin L; Cruz K; Patteson AE; Pogoda K; Shenoy VB; Janmey PA
    Nature; 2019 Sep; 573(7772):96-101. PubMed ID: 31462779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cross-linker dynamics determine the mechanical properties of actin gels.
    Wachsstock DH; Schwarz WH; Pollard TD
    Biophys J; 1994 Mar; 66(3 Pt 1):801-9. PubMed ID: 8011912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emergent properties of composite semiflexible biopolymer networks.
    Jensen MH; Morris EJ; Goldman RD; Weitz DA
    Bioarchitecture; 2014; 4(4-5):138-43. PubMed ID: 25759912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanocolloidal hydrogel mimics the structure and nonlinear mechanical properties of biological fibrous networks.
    Prince E; Morozova S; Chen Z; Adibnia V; Yakavets I; Panyukov S; Rubinstein M; Kumacheva E
    Proc Natl Acad Sci U S A; 2023 Dec; 120(51):e2220755120. PubMed ID: 38091296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uncoupling shear and uniaxial elastic moduli of semiflexible biopolymer networks: compression-softening and stretch-stiffening.
    van Oosten AS; Vahabi M; Licup AJ; Sharma A; Galie PA; MacKintosh FC; Janmey PA
    Sci Rep; 2016 Jan; 6():19270. PubMed ID: 26758452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mechanical properties of actin gels. Elastic modulus and filament motions.
    Janmey PA; Hvidt S; Käs J; Lerche D; Maggs A; Sackmann E; Schliwa M; Stossel TP
    J Biol Chem; 1994 Dec; 269(51):32503-13. PubMed ID: 7798252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diffusing wave spectroscopy microrheology of actin filament networks.
    Palmer A; Xu J; Kuo SC; Wirtz D
    Biophys J; 1999 Feb; 76(2):1063-71. PubMed ID: 9916038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical and structural properties of in vitro neurofilament hydrogels.
    Rammensee S; Janmey PA; Bausch AR
    Eur Biophys J; 2007 Jul; 36(6):661-8. PubMed ID: 17340095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Actin filament alignment causes mechanical hysteresis in cross-linked networks.
    Scheff DR; Redford SA; Lorpaiboon C; Majumdar S; Dinner AR; Gardel ML
    Soft Matter; 2021 Jun; 17(22):5499-5507. PubMed ID: 33989373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Origins of elasticity in intermediate filament networks.
    Lin YC; Yao NY; Broedersz CP; Herrmann H; Mackintosh FC; Weitz DA
    Phys Rev Lett; 2010 Feb; 104(5):058101. PubMed ID: 20366795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Loops versus lines and the compression stiffening of cells.
    Gandikota MC; Pogoda K; van Oosten A; Engstrom TA; Patteson AE; Janmey PA; Schwarz JM
    Soft Matter; 2020 May; 16(18):4389-4406. PubMed ID: 32249282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanics of bundled semiflexible polymer networks.
    Lieleg O; Claessens MM; Heussinger C; Frey E; Bausch AR
    Phys Rev Lett; 2007 Aug; 99(8):088102. PubMed ID: 17930985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytoskeletal polymer networks: viscoelastic properties are determined by the microscopic interaction potential of cross-links.
    Lieleg O; Schmoller KM; Claessens MM; Bausch AR
    Biophys J; 2009 Jun; 96(11):4725-32. PubMed ID: 19486695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.