These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 36475917)
1. Scrutiny of NolA and NodD1 Regulatory Roles in Symbiotic Compatibility Unveils New Insights into Bradyrhizobium guangxiense CCBAU53363 Interacting with Peanut (Arachis hypogaea) and Mung Bean (Vigna radiata). Shang JY; Zhang P; Jia YW; Lu YN; Wu Y; Ji S; Chen L; Wang ET; Chen WX; Sui XH Microbiol Spectr; 2023 Feb; 11(1):e0209622. PubMed ID: 36475917 [TBL] [Abstract][Full Text] [Related]
2. Coordinated regulation of symbiotic adaptation by NodD proteins and NolA in the type I peanut bradyrhizobial strain Bradyrhizobium zhanjiangense CCBAU51778. Shang JY; Zhang P; Jia YW; Lu YN; Wu Y; Ji S; Chen L; Wang ET; Chen WX; Sui XH Microbiol Res; 2022 Dec; 265():127188. PubMed ID: 36152611 [TBL] [Abstract][Full Text] [Related]
3. Bradyrhizobium (Arachis) sp. strain NC92 contains two nodD genes involved in the repression of nodA and a nolA gene required for the efficient nodulation of host plants. Gillette WK; Elkan GH J Bacteriol; 1996 May; 178(10):2757-66. PubMed ID: 8631662 [TBL] [Abstract][Full Text] [Related]
4. Regulatory nodD1 and nodD2 genes of Rhizobium tropici strain CIAT 899 and their roles in the early stages of molecular signaling and host-legume nodulation. del Cerro P; Rolla-Santos AA; Gomes DF; Marks BB; Pérez-Montaño F; Rodríguez-Carvajal MÁ; Nakatani AS; Gil-Serrano A; Megías M; Ollero FJ; Hungria M BMC Genomics; 2015 Mar; 16(1):251. PubMed ID: 25880529 [TBL] [Abstract][Full Text] [Related]
5. Symbiosis Contribution of Non-nodulating Bradyrhizobium cosmicum S23321 after Transferal of the Symbiotic Plasmid pDOA9. Wulandari D; Tittabutr P; Songwattana P; Piromyou P; Teamtisong K; Boonkerd N; Boonchuen P; Teaumroong N Microbes Environ; 2022; 37(2):. PubMed ID: 35676049 [TBL] [Abstract][Full Text] [Related]
6. Potential of Rice Stubble as a Reservoir of Bradyrhizobial Inoculum in Rice-Legume Crop Rotation. Piromyou P; Greetatorn T; Teamtisong K; Tittabutr P; Boonkerd N; Teaumroong N Appl Environ Microbiol; 2017 Nov; 83(22):. PubMed ID: 28916558 [No Abstract] [Full Text] [Related]
7. Rhizobium meliloti has three functional copies of the nodD symbiotic regulatory gene. Honma MA; Ausubel FM Proc Natl Acad Sci U S A; 1987 Dec; 84(23):8558-62. PubMed ID: 3479806 [TBL] [Abstract][Full Text] [Related]
8. InnB, a Novel Type III Effector of Nguyen HP; Ratu STN; Yasuda M; Göttfert M; Okazaki S Front Microbiol; 2018; 9():3155. PubMed ID: 30619219 [No Abstract] [Full Text] [Related]
9. The Sinorhizobium (Ensifer) fredii HH103 Nodulation Outer Protein NopI Is a Determinant for Efficient Nodulation of Soybean and Cowpea Plants. Jiménez-Guerrero I; Pérez-Montaño F; Medina C; Ollero FJ; López-Baena FJ Appl Environ Microbiol; 2017 Mar; 83(5):. PubMed ID: 27986730 [TBL] [Abstract][Full Text] [Related]
11. The Bradyrhizobium diazoefficiens type III effector NopE modulates the regulation of plant hormones towards nodulation in Vigna radiata. Piromyou P; Nguyen HP; Songwattana P; Boonchuen P; Teamtisong K; Tittabutr P; Boonkerd N; Alisha Tantasawat P; Göttfert M; Okazaki S; Teaumroong N Sci Rep; 2021 Aug; 11(1):16604. PubMed ID: 34400661 [TBL] [Abstract][Full Text] [Related]
12. RNA-Seq analysis of mung bean (Vigna radiata L.) roots shows differential gene expression and predicts regulatory pathways responding to taxonomically different rhizobia. Hakim S; Imran A; Hussain MS; Mirza MS Microbiol Res; 2023 Oct; 275():127451. PubMed ID: 37478540 [TBL] [Abstract][Full Text] [Related]
13. NopP2 effector of Bradyrhizobium elkanii USDA61 is a determinant of nodulation in Vigna radiata cultivars. Piromyou P; Pruksametanan N; Nguyen HP; Songwattana P; Wongdee J; Nareephot P; Greetatorn T; Teamtisong K; Tittabutr P; Boonkerd N; Sato S; Boonchuen P; Okazaki S; Teaumroong N Sci Rep; 2024 Oct; 14(1):24541. PubMed ID: 39424841 [TBL] [Abstract][Full Text] [Related]
14. Identification of Nguyen HP; Ratu STN; Yasuda M; Teaumroong N; Okazaki S Genes (Basel); 2020 Apr; 11(5):. PubMed ID: 32349348 [No Abstract] [Full Text] [Related]
15. Opening the "black box" of nodD3, nodD4 and nodD5 genes of Rhizobium tropici strain CIAT 899. del Cerro P; Rolla-Santos AA; Gomes DF; Marks BB; del Rosario Espuny M; Rodríguez-Carvajal MÁ; Soria-Díaz ME; Nakatani AS; Hungria M; Ollero FJ; Megías M BMC Genomics; 2015 Oct; 16():864. PubMed ID: 26502986 [TBL] [Abstract][Full Text] [Related]
16. Role of ethylene in effective establishment of the peanut-bradyrhizobia symbiotic interaction. Muñoz VL; Figueredo MS; Reinoso H; Fabra A Plant Biol (Stuttg); 2021 Nov; 23(6):1141-1148. PubMed ID: 34490719 [TBL] [Abstract][Full Text] [Related]
17. Identification of Bradyrhizobium elkanii Genes Involved in Incompatibility with Vigna radiata. Nguyen HP; Miwa H; Kaneko T; Sato S; Okazaki S Genes (Basel); 2017 Dec; 8(12):. PubMed ID: 29292795 [TBL] [Abstract][Full Text] [Related]
18. Development of an Illumina-based analysis method to study bradyrhizobial population structure-case study on nitrogen-fixing rhizobia associating with cowpea or peanut. Le Quéré A; Diop S; Dehaene N; Niang D; Do Rego F; Fall S; Neyra M; Karsova-Wade T Appl Microbiol Biotechnol; 2021 Sep; 105(18):6943-6957. PubMed ID: 34453562 [TBL] [Abstract][Full Text] [Related]
19. Nodulation gene regulation and quorum sensing control density-dependent suppression and restriction of nodulation in the Bradyrhizobium japonicum-soybean symbiosis. Jitacksorn S; Sadowsky MJ Appl Environ Microbiol; 2008 Jun; 74(12):3749-56. PubMed ID: 18441104 [TBL] [Abstract][Full Text] [Related]
20. Subgroups of the Cowpea Miscellany: Symbiotic Specificity within Bradyrhizobium spp. for Vigna unguiculata, Phaseolus lunatus, Arachis hypogaea, and Macroptilium atropurpureum. Thies JE; Bohlool BB; Singleton PW Appl Environ Microbiol; 1991 May; 57(5):1540-5. PubMed ID: 16348492 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]