These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 36475917)
21. Genetic diversity and symbiotic effectiveness of Bradyrhizobium strains nodulating selected annual grain legumes growing in Ethiopia. Degefu T; Wolde-Meskel E; Rasche F Int J Syst Evol Microbiol; 2018 Jan; 68(1):449-460. PubMed ID: 29143730 [TBL] [Abstract][Full Text] [Related]
22. Lotus Accessions Possess Multiple Checkpoints Triggered by Different Type III Secretion System Effectors of the Wide-Host-Range Symbiont Bradyrhizobium elkanii USDA61. Kusakabe S; Higasitani N; Kaneko T; Yasuda M; Miwa H; Okazaki S; Saeki K; Higashitani A; Sato S Microbes Environ; 2020; 35(1):. PubMed ID: 32074548 [TBL] [Abstract][Full Text] [Related]
23. Endophytic Fungus Drives Nodulation and N Xie XG; Zhang FM; Yang T; Chen Y; Li XG; Dai CC mBio; 2019 Jul; 10(4):. PubMed ID: 31311876 [TBL] [Abstract][Full Text] [Related]
24. Role of reactive oxygen species generation and Nod factors during the early symbiotic interaction between bradyrhizobia and peanut, a legume infected by crack entry. Muñoz V; Ibáñez F; Tordable M; Megías M; Fabra A J Appl Microbiol; 2015 Jan; 118(1):182-92. PubMed ID: 25413288 [TBL] [Abstract][Full Text] [Related]
25. DNA sequence of the common nodulation genes of Bradyrhizobium elkanii and their phylogenetic relationship to those of other nodulating bacteria. Dobert RC; Breil BT; Triplett EW Mol Plant Microbe Interact; 1994; 7(5):564-72. PubMed ID: 7949325 [TBL] [Abstract][Full Text] [Related]
26. Detection of the type III secretion system and its phylogenetic and symbiotic characterization in peanut bradyrhizobia isolated from Guangdong Province, China. Ruan H; Hu M; Chen J; Li X; Li T; Lai Y; Wang ET; Gu J Syst Appl Microbiol; 2018 Sep; 41(5):437-443. PubMed ID: 29759900 [TBL] [Abstract][Full Text] [Related]
27. NodD1 and NodD2 Are Not Required for the Symbiotic Interaction of Bradyrhizobium ORS285 with Nod-Factor-Independent Aeschynomene Legumes. Nouwen N; Fardoux J; Giraud E PLoS One; 2016; 11(6):e0157888. PubMed ID: 27315080 [TBL] [Abstract][Full Text] [Related]
29. Rhizobium leguminosarum bv. trifolii NodD2 Enhances Competitive Nodule Colonization in the Clover-Rhizobium Symbiosis. Ferguson S; Major AS; Sullivan JT; Bourke SD; Kelly SJ; Perry BJ; Ronson CW Appl Environ Microbiol; 2020 Sep; 86(18):. PubMed ID: 32651206 [TBL] [Abstract][Full Text] [Related]
30. Auxin signalling of Arachis hypogaea activated by colonization of mutualistic fungus Phomopsis liquidambari enhances nodulation and N Zhang W; Sun K; Shi RH; Yuan J; Wang XJ; Dai CC Plant Cell Environ; 2018 Sep; 41(9):2093-2108. PubMed ID: 29469227 [TBL] [Abstract][Full Text] [Related]
31. An oxidative burst and its attenuation by bacterial peroxidase activity is required for optimal establishment of the Arachis hypogaea-Bradyrhizobium sp. symbiosis. Muñoz V; Ibáñez F; Figueredo MS; Fabra A J Appl Microbiol; 2016 Jul; 121(1):244-53. PubMed ID: 27037857 [TBL] [Abstract][Full Text] [Related]
32. Priming of rhizobial nodulation signaling in the mycosphere accelerates nodulation of legume hosts. Zhang W; Luo X; Mei YZ; Yang Q; Zhang AY; Chen M; Mei Y; Ma CY; Du YC; Li M; Zhu Q; Sun K; Xu FJ; Dai CC New Phytol; 2022 Aug; 235(3):1212-1230. PubMed ID: 35488499 [TBL] [Abstract][Full Text] [Related]
33. Phylogeny of bradyrhizobia from Chinese cowpea miscellany inferred from 16S rRNA, atpD, glnII, and 16S-23S intergenic spacer sequences. Zhang S; Xie F; Yang J; Li Y Can J Microbiol; 2011 Apr; 57(4):316-27. PubMed ID: 21491983 [TBL] [Abstract][Full Text] [Related]
34. Genome analysis of a novel Bradyrhizobium sp. DOA9 carrying a symbiotic plasmid. Okazaki S; Noisangiam R; Okubo T; Kaneko T; Oshima K; Hattori M; Teamtisong K; Songwattana P; Tittabutr P; Boonkerd N; Saeki K; Sato S; Uchiumi T; Minamisawa K; Teaumroong N PLoS One; 2015; 10(2):e0117392. PubMed ID: 25710540 [TBL] [Abstract][Full Text] [Related]
35. Nod factor-independent 'crack-entry' symbiosis in dalbergoid legume Arachis hypogaea. Guha S; Molla F; Sarkar M; Ibañez F; Fabra A; DasGupta M Environ Microbiol; 2022 Jun; 24(6):2732-2746. PubMed ID: 34995397 [TBL] [Abstract][Full Text] [Related]
36. Phylogenetic distribution and evolutionary dynamics of Teulet A; Gully D; Rouy Z; Camuel A; Koebnik R; Giraud E; Lassalle F Microb Genom; 2020 Sep; 6(9):. PubMed ID: 32783800 [No Abstract] [Full Text] [Related]
37. Temperature-dependent expression of type III secretion system genes and its regulation in Bradyrhizobium japonicum. Wei M; Takeshima K; Yokoyama T; Minamisawa K; Mitsui H; Itakura M; Kaneko T; Tabata S; Saeki K; Omori H; Tajima S; Uchiumi T; Abe M; Ishii S; Ohwada T Mol Plant Microbe Interact; 2010 May; 23(5):628-37. PubMed ID: 20367471 [TBL] [Abstract][Full Text] [Related]
38. Dual-luciferase assay and siRNA silencing for nodD1 to study the competitiveness of Bradyrhizobium diazoefficiens USDA110 in soybean nodulation. Ramongolalaina C Microbiol Res; 2020 Aug; 237():126488. PubMed ID: 32408049 [TBL] [Abstract][Full Text] [Related]
39. Structural and functional analysis of two different nodD genes in Bradyrhizobium japonicum USDA110. Göttfert M; Holzhäuser D; Bäni D; Hennecke H Mol Plant Microbe Interact; 1992; 5(3):257-65. PubMed ID: 1421512 [TBL] [Abstract][Full Text] [Related]
40. Multiple Genes of Symbiotic Plasmid and Chromosome in Type II Peanut Wu Y; Li YH; Shang JY; Wang ET; Chen L; Huo B; Sui XH; Tian CF; Chen WF; Chen WX Front Microbiol; 2020; 11():1175. PubMed ID: 32655513 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]