These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 36475944)
21. A Novel Plasma Membrane-Anchored Protein Regulates Xylem Cell-Wall Deposition through Microtubule-Dependent Lateral Inhibition of Rho GTPase Domains. Sugiyama Y; Wakazaki M; Toyooka K; Fukuda H; Oda Y Curr Biol; 2017 Aug; 27(16):2522-2528.e4. PubMed ID: 28803875 [TBL] [Abstract][Full Text] [Related]
22. Rho of plant GTPase signaling regulates the behavior of Arabidopsis kinesin-13A to establish secondary cell wall patterns. Oda Y; Fukuda H Plant Cell; 2013 Nov; 25(11):4439-50. PubMed ID: 24280391 [TBL] [Abstract][Full Text] [Related]
23. Augmin Antagonizes Katanin at Microtubule Crossovers to Control the Dynamic Organization of Plant Cortical Arrays. Wang G; Wang C; Liu W; Ma Y; Dong L; Tian J; Yu Y; Kong Z Curr Biol; 2018 Apr; 28(8):1311-1317.e3. PubMed ID: 29657114 [TBL] [Abstract][Full Text] [Related]
24. Microtubule nucleation for the assembly of acentrosomal microtubule arrays in plant cells. Lee YJ; Liu B New Phytol; 2019 Jun; 222(4):1705-1718. PubMed ID: 30681146 [TBL] [Abstract][Full Text] [Related]
30. Augmin triggers microtubule-dependent microtubule nucleation in interphase plant cells. Liu T; Tian J; Wang G; Yu Y; Wang C; Ma Y; Zhang X; Xia G; Liu B; Kong Z Curr Biol; 2014 Nov; 24(22):2708-13. PubMed ID: 25447999 [TBL] [Abstract][Full Text] [Related]
31. Acentrosomal microtubule nucleation in higher plants. Schmit AC Int Rev Cytol; 2002; 220():257-89. PubMed ID: 12224551 [TBL] [Abstract][Full Text] [Related]
32. The roles of the cytoskeleton during cellulose deposition at the secondary cell wall. Wightman R; Turner SR Plant J; 2008 Jun; 54(5):794-805. PubMed ID: 18266917 [TBL] [Abstract][Full Text] [Related]
33. Cortical microtubule arrays in the Arabidopsis seedling. Lucas J; Shaw SL Curr Opin Plant Biol; 2008 Feb; 11(1):94-8. PubMed ID: 18226578 [TBL] [Abstract][Full Text] [Related]
34. Monte Carlo simulations of microtubule arrays: The critical roles of rescue transitions, the cell boundary, and tubulin concentration in shaping microtubule distributions. Cassimeris L; Leung JC; Odde DJ PLoS One; 2018; 13(5):e0197538. PubMed ID: 29782540 [TBL] [Abstract][Full Text] [Related]
35. The self-organization of plant microtubules inside the cell volume yields their cortical localization, stable alignment, and sensitivity to external cues. Mirabet V; Krupinski P; Hamant O; Meyerowitz EM; Jönsson H; Boudaoud A PLoS Comput Biol; 2018 Feb; 14(2):e1006011. PubMed ID: 29462151 [TBL] [Abstract][Full Text] [Related]
36. The cortical cytoskeletal network and cell-wall dynamics in the unicellular charophycean green alga Penium margaritaceum. Ochs J; LaRue T; Tinaz B; Yongue C; Domozych DS Ann Bot; 2014 Oct; 114(6):1237-49. PubMed ID: 24603606 [TBL] [Abstract][Full Text] [Related]
37. Microtubule simulations in plant biology: A field coming to maturity. Saltini M; Deinum EE Curr Opin Plant Biol; 2024 Oct; 81():102596. PubMed ID: 38981324 [TBL] [Abstract][Full Text] [Related]
38. The effect of anisotropic microtubule-bound nucleations on ordering in the plant cortical array. Foteinopoulos P; Mulder BM Bull Math Biol; 2014 Nov; 76(11):2907-22. PubMed ID: 25348063 [TBL] [Abstract][Full Text] [Related]
39. Mechanisms of self-organization of cortical microtubules in plants revealed by computational simulations. Allard JF; Wasteneys GO; Cytrynbaum EN Mol Biol Cell; 2010 Jan; 21(2):278-86. PubMed ID: 19910489 [TBL] [Abstract][Full Text] [Related]