These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 36476)

  • 1. Further studies of glucocorticoid effects on spinal cord function: single and repetitive monosynaptic transmission and apparent Ia afferent transmitter turnover.
    Hall ED; Baker T
    J Pharmacol Exp Ther; 1979 Jul; 210(1):112-5. PubMed ID: 36476
    [No Abstract]   [Full Text] [Related]  

  • 2. Effects of ethosuximide on transmission of repetitive impulses and apparent rates of transmitter turnover in the spinal monosynaptic pathway.
    Capek R; Esplin B
    J Pharmacol Exp Ther; 1977 May; 201(2):320-5. PubMed ID: 16119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucocorticoid effects on spinal cord function.
    Hall ED; Baker T; Riker WF
    J Pharmacol Exp Ther; 1978 Aug; 206(2):361-70. PubMed ID: 210274
    [No Abstract]   [Full Text] [Related]  

  • 4. [The effect of curare-like agents on synaptic transmission in the spinal cord].
    Allautdin RN
    Farmakol Toksikol; 1978; 41(4):397-400. PubMed ID: 208859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in spinal cord neural mechanisms associated with digitalis administration.
    Osterberg RE; Raines A
    J Pharmacol Exp Ther; 1973 Nov; 187(2):246-59. PubMed ID: 4356013
    [No Abstract]   [Full Text] [Related]  

  • 6. Rates of transmitter turnover in spinal monosynaptic pathway investigated by electrophysiological techniques.
    Esplin DW; Zablocka-Esplin B
    J Neurophysiol; 1971 Sep; 34(5):842-59. PubMed ID: 4398563
    [No Abstract]   [Full Text] [Related]  

  • 7. The effect of dopa on the spinal cord. 8. Presynaptic and "remote" inhibition of transmission from Ia afferents to alpha motoneurones.
    Bergmans J; Burke R; Fedina L; Lundberg A
    Acta Physiol Scand; 1974 Mar; 90(3):618-39. PubMed ID: 4364452
    [No Abstract]   [Full Text] [Related]  

  • 8. Depression of spinal monosynaptic transmission by diethyl ether: quantal analysis of unitary synaptic potentials.
    Zorychta E; Capek R
    J Pharmacol Exp Ther; 1978 Dec; 207(3):825-36. PubMed ID: 215743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effect of L-dopa upon transmission in ascending propriospinal pathways of cats].
    Bergmans J; Miller S
    J Physiol (Paris); 1972 Oct; 65():Suppl:200A. PubMed ID: 4346475
    [No Abstract]   [Full Text] [Related]  

  • 10. Group Ia primary afferent terminal defect in cats with acrylamide neuropathy.
    Goldstein BD; Lowndes HE
    Neurotoxicology; 1981 Oct; 2(2):297-312. PubMed ID: 6119661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of para-methoxyphenylethylamine on reflexes and motoneurons in the cat lumbar spinal cord.
    Jordan LM; Willis WD; Matthews MA
    J Pharmacol Exp Ther; 1972 Apr; 181(1):53-64. PubMed ID: 5013157
    [No Abstract]   [Full Text] [Related]  

  • 12. Persistent changes in transmission in spinal monosynaptic pathway after prolonged tetanization.
    Zablocka-Esplin B; Esplin DW
    J Neurophysiol; 1971 Sep; 34(5):860-7. PubMed ID: 4398564
    [No Abstract]   [Full Text] [Related]  

  • 13. Substance P and excitatory transmitter of primary sensory neurons.
    Otsuka M; Konishi S
    Cold Spring Harb Symp Quant Biol; 1976; 40():135-43. PubMed ID: 7378
    [No Abstract]   [Full Text] [Related]  

  • 14. [Effect of carbon monoxide on spinal cord reflexes and afferent nerve conduction in cats].
    Barrios P; Koll W; Malorny G
    Naunyn Schmiedebergs Arch Pharmakol; 1969; 264(1):1-17. PubMed ID: 4241670
    [No Abstract]   [Full Text] [Related]  

  • 15. The effect of bicuculline on primary afferent terminal excitability.
    Levy RA; Repkin AH; Anderson EG
    Brain Res; 1971 Sep; 32(1):261-5. PubMed ID: 4329653
    [No Abstract]   [Full Text] [Related]  

  • 16. Recurrent control from motor axon collaterals of Ia inhibitory pathways in the spinal cord of the cat.
    Lindström S
    Acta Physiol Scand Suppl; 1973; 392():1-43. PubMed ID: 4356646
    [No Abstract]   [Full Text] [Related]  

  • 17. Interaction of gamma-aminobutyric acid receptor type B receptors and calcium channels in nociceptive transmission studied in the mouse hemisected spinal cord in vitro: withdrawal symptoms related to baclofen treatment.
    Dang K; Bowery NG; Urban L
    Neurosci Lett; 2004 May; 361(1-3):72-5. PubMed ID: 15135896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of cellular and synaptic variability in the lamprey spinal cord.
    Parker D; Bevan S
    J Neurophysiol; 2007 Jan; 97(1):44-56. PubMed ID: 17021027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Action of a GABA-derivative on postsynaptic potentials and membrane properties of cats' spinal motoneurones.
    Pierau FK; Zimmermann P
    Brain Res; 1973 May; 54():376-80. PubMed ID: 4350815
    [No Abstract]   [Full Text] [Related]  

  • 20. Synaptic activity in motoneurons of the immature cat spinal cord in vitro. Effects of manganese and tetrodotoxin.
    Shapovalov AI; Shiriaev BI; Tamarova ZA
    Brain Res; 1979 Jan; 160(3):524-8. PubMed ID: 217482
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.