These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 36476560)

  • 1. Kinase inhibitors for cancer alter metabolism, blood glucose, and insulin.
    Duggan BM; Marko DM; Muzaffar R; Chan DY; Schertzer JD
    J Endocrinol; 2023 Feb; 256(2):. PubMed ID: 36476560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RIPK2 Dictates Insulin Responses to Tyrosine Kinase Inhibitors in Obese Male Mice.
    Duggan BM; Cavallari JF; Foley KP; Barra NG; Schertzer JD
    Endocrinology; 2020 Aug; 161(8):. PubMed ID: 32473019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemical efficacy of vitamin D in ameliorating endocrine and metabolic disorders in diabetic rats.
    Sadek KM; Shaheen H
    Pharm Biol; 2014 May; 52(5):591-6. PubMed ID: 24251869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diabetes and branched-chain amino acids: What is the link?
    Bloomgarden Z
    J Diabetes; 2018 May; 10(5):350-352. PubMed ID: 29369529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proton pump inhibitors: impact on glucose metabolism.
    Boj-Carceller D
    Endocrine; 2013 Feb; 43(1):22-32. PubMed ID: 22886351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of a kinase profile that predicts chromosome damage induced by small molecule kinase inhibitors.
    Olaharski AJ; Gonzaludo N; Bitter H; Goldstein D; Kirchner S; Uppal H; Kolaja K
    PLoS Comput Biol; 2009 Jul; 5(7):e1000446. PubMed ID: 19629159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tyrosine kinase inhibitors of Ripk2 attenuate bacterial cell wall-mediated lipolysis, inflammation and dysglycemia.
    Duggan BM; Foley KP; Henriksbo BD; Cavallari JF; Tamrakar AK; Schertzer JD
    Sci Rep; 2017 May; 7(1):1578. PubMed ID: 28484277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preservation of β-Cells as a Therapeutic Strategy for Diabetes.
    Taneera J; Saber-Ayad MM
    Horm Metab Res; 2024 Apr; 56(4):261-271. PubMed ID: 38387480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of reduced insulin-stimulated bone blood flow in the pathogenesis of metabolic insulin resistance and diabetic bone fragility.
    Hinton PS
    Med Hypotheses; 2016 Aug; 93():81-6. PubMed ID: 27372862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Switching from NPH insulin to once-daily insulin detemir in basal-bolus-treated patients with diabetes mellitus: data from the European cohort of the PREDICTIVE study.
    Sreenan S; Virkamäki A; Zhang K; Hansen JB;
    Int J Clin Pract; 2008 Dec; 62(12):1971-80. PubMed ID: 19166444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Circulating LncRNAs Analysis in Patients with Type 2 Diabetes Reveals Novel Genes Influencing Glucose Metabolism and Islet β-Cell Function.
    Ruan Y; Lin N; Ma Q; Chen R; Zhang Z; Wen W; Chen H; Sun J
    Cell Physiol Biochem; 2018; 46(1):335-350. PubMed ID: 29590649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induction of remission in diabetes by lowering blood glucose.
    Weir GC; Bonner-Weir S
    Front Endocrinol (Lausanne); 2023; 14():1213954. PubMed ID: 37409234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emerging role of protein kinases in diabetes mellitus: From mechanism to therapy.
    Gupta P; Taiyab A; Hassan MI
    Adv Protein Chem Struct Biol; 2021; 124():47-85. PubMed ID: 33632470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting the ERK signaling pathway as a potential treatment for insulin resistance and type 2 diabetes.
    Ozaki KI; Awazu M; Tamiya M; Iwasaki Y; Harada A; Kugisaki S; Tanimura S; Kohno M
    Am J Physiol Endocrinol Metab; 2016 Apr; 310(8):E643-E651. PubMed ID: 26860984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protection of pancreatic beta-cells: is it feasible?
    Bonora E
    Nutr Metab Cardiovasc Dis; 2008 Jan; 18(1):74-83. PubMed ID: 18096375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vitamin D and diabetes.
    Takiishi T; Gysemans C; Bouillon R; Mathieu C
    Endocrinol Metab Clin North Am; 2010 Jun; 39(2):419-46, table of contents. PubMed ID: 20511061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlates of Insulin-Stimulated Glucose Disposal in Recent-Onset Type 1 and Type 2 Diabetes.
    Simon MC; Möller-Horigome A; Strassburger K; Nowotny B; Knebel B; Müssig K; Herder C; Szendroedi J; Roden MW;
    J Clin Endocrinol Metab; 2019 Jun; 104(6):2295-2304. PubMed ID: 30689904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential anti-diabetic effects and mechanism of action of charantin-rich extract of Taiwanese Momordica charantia between type 1 and type 2 diabetic mice.
    Wang HY; Kan WC; Cheng TJ; Yu SH; Chang LH; Chuu JJ
    Food Chem Toxicol; 2014 Jul; 69():347-56. PubMed ID: 24751968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The entero-insular axis: implications for human metabolism.
    Ranganath LR
    Clin Chem Lab Med; 2008; 46(1):43-56. PubMed ID: 18020966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of JAK-STAT and NF-κB signalling systems could be a novel therapeutic target against insulin resistance and type 2 diabetes.
    Bako HY; Ibrahim MA; Isah MS; Ibrahim S
    Life Sci; 2019 Dec; 239():117045. PubMed ID: 31730866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.