These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 36477714)

  • 1. Copper laser patterning on a flexible substrate using a cost-effective 3D printer.
    Chakraborty S; Park HY; Ahn SI
    Sci Rep; 2022 Dec; 12(1):21149. PubMed ID: 36477714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of dual sintering with laser irradiation and thermal treatment on printed copper nanoparticle patterns.
    Chowdhury R; Young K; Poche TJ; Jang S
    Nanotechnology; 2023 Aug; 34(42):. PubMed ID: 37437557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cu ion ink for a flexible substrate and highly conductive patterning by intensive pulsed light sintering.
    Wang BY; Yoo TH; Song YW; Lim DS; Oh YJ
    ACS Appl Mater Interfaces; 2013 May; 5(10):4113-9. PubMed ID: 23586602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A highly reliable copper nanowire/nanoparticle ink pattern with high conductivity on flexible substrate prepared via a flash light-sintering technique.
    Joo SJ; Park SH; Moon CJ; Kim HS
    ACS Appl Mater Interfaces; 2015 Mar; 7(10):5674-84. PubMed ID: 25714508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct Pattern Growth of Carbon Nanomaterials by Laser Scribing on Spin-Coated Cu-PI Composite Films and Their Gas Sensor Application.
    Ko YI; Lee G; Kim MJ; Lee DY; Nam J; Jang AR; Lee JO; Kim KS
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34207418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Printed highly conductive Cu films with strong adhesion enabled by low-energy photonic sintering on low-Tg flexible plastic substrate.
    Wu X; Shao S; Chen Z; Cui Z
    Nanotechnology; 2017 Jan; 28(3):035203. PubMed ID: 27941231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copper circuits fabricated on flexible polymer substrates by a high repetition rate femtosecond laser-induced selective local reduction of copper oxide nanoparticles.
    Huang Y; Xie X; Li M; Xu M; Long J
    Opt Express; 2021 Feb; 29(3):4453-4463. PubMed ID: 33771023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of complex agent and sintering temperature on conductive copper complex paste.
    Naderi-Samani H; Razavi RS; Mozaffarinia R
    Heliyon; 2022 Dec; 8(12):e12624. PubMed ID: 36619403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Copper Micro-Labyrinth with Graphene Skin: New Transparent Flexible Electrodes with Ultimate Low Sheet Resistivity and Superior Stability.
    Yu HK
    Nanomaterials (Basel); 2016 Sep; 6(9):. PubMed ID: 28335289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct Writing of Copper Micropatterns Using Near-Infrared Femtosecond Laser-Pulse-Induced Reduction of Glyoxylic Acid Copper Complex.
    Mizoshiri M; Aoyama K; Uetsuki A; Ohishi T
    Micromachines (Basel); 2019 Jun; 10(6):. PubMed ID: 31212926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct Writing of Cu Patterns on Polydimethylsiloxane Substrates Using Femtosecond Laser Pulse-Induced Reduction of Glyoxylic Acid Copper Complex.
    Ha NP; Ohishi T; Mizoshiri M
    Micromachines (Basel); 2021 Apr; 12(5):. PubMed ID: 33925411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly Conductive Cu-Cu Joint Formation by Low-Temperature Sintering of Formic Acid-Treated Cu Nanoparticles.
    Liu J; Chen H; Ji H; Li M
    ACS Appl Mater Interfaces; 2016 Dec; 8(48):33289-33298. PubMed ID: 27934145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of Conductive Copper Films on Flexible Polymer Substrates by Low-Temperature Sintering of Composite Cu Ink in Air.
    Kanzaki M; Kawaguchi Y; Kawasaki H
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20852-20858. PubMed ID: 28574247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expeditious low-temperature sintering of copper nanoparticles with thin defective carbon shells.
    Kim C; Lee G; Rhee C; Lee M
    Nanoscale; 2015 Apr; 7(15):6627-35. PubMed ID: 25794325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laser direct synthesis and patterning of silver nano/microstructures on a polymer substrate.
    Liu YK; Lee MT
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):14576-82. PubMed ID: 25076124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laser-Assisted Reduction of Highly Conductive Circuits Based on Copper Nitrate for Flexible Printed Sensors.
    Bai S; Zhang S; Zhou W; Ma D; Ma Y; Joshi P; Hu A
    Nanomicro Lett; 2017; 9(4):42. PubMed ID: 30393737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrathin Plasmonic Optical/Thermal Barrier: Flashlight-Sintered Copper Electrodes Compatible with Polyethylene Terephthalate Plastic Substrates.
    Park HJ; Cho MK; Jeong YW; Kim D; Lee SY; Choi Y; Jeong S
    ACS Appl Mater Interfaces; 2017 Dec; 9(50):43814-43821. PubMed ID: 29182241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A flexible and highly sensitive nonenzymatic glucose sensor based on DVD-laser scribed graphene substrate.
    Lin S; Feng W; Miao X; Zhang X; Chen S; Chen Y; Wang W; Zhang Y
    Biosens Bioelectron; 2018 Jul; 110():89-96. PubMed ID: 29602035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-power laser manufacturing of copper tracks on 3D printed geometry using liquid polyimide coating.
    Abdulrhman M; Kaniyoor A; Fernández-Posada CM; Acosta-Mora P; McLean I; Weston N; Desmulliez MPY; Marques-Hueso J
    Nanoscale Adv; 2023 Apr; 5(8):2280-2287. PubMed ID: 37056619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formulation of Screen-Printable Cu Molecular Ink for Conductive/Flexible/Solderable Cu Traces.
    Deore B; Paquet C; Kell AJ; Lacelle T; Liu X; Mozenson O; Lopinski G; Brzezina G; Guo C; Lafrenière S; Malenfant PRL
    ACS Appl Mater Interfaces; 2019 Oct; 11(42):38880-38894. PubMed ID: 31550883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.